
208

𝜄DOT: A DOT Calculus with Object Initialization

IFAZ KABIR, University of Alberta, Canada

YUFENG LI, University of Waterloo, Canada

ONDŘEJ LHOTÁK, University of Waterloo, Canada

The Dependent Object Types (DOT) calculus serves as a foundation of the Scala programming language, with

a machine-verified soundness proof. However, Scala’s type system has been shown to be unsound due to null

references, which are used as default values of fields of objects before they have been initialized. This paper

proposes 𝜄DOT, an extension of DOT for ensuring safe initialization of objects. DOT was previously extended

to 𝜅DOT with the addition of mutable fields and constructors. To 𝜅DOT, 𝜄DOT adds an initialization effect

system that statically prevents the possibility of reading a null reference from an uninitialized object. To design

𝜄DOT, we have reformulated the Freedom Before Commitment object initialization scheme in terms of disjoint

subheaps to make it easier to formalize in an effect system and prove sound. Soundness of 𝜄DOT depends on

the interplay of three systems of rules: a type system close to that of DOT, an effect system to ensure definite

assignment of fields in each constructor, and an initialization system that tracks the initialization status of

objects in a stack of subheaps. We have proven the overall system sound and verified the soundness proof

using the Coq proof assistant.

CCS Concepts: • Software and its engineering → Formal language definitions; Object oriented lan-

guages.

Additional Key Words and Phrases: type safety, dependent objects, DOT, Scala, initialization

ACM Reference Format:

Ifaz Kabir, Yufeng Li, and Ondřej Lhoták. 2020. 𝜄DOT: A DOT Calculus with Object Initialization. Proc. ACM

Program. Lang. 4, OOPSLA, Article 208 (November 2020), 28 pages. https://doi.org/10.1145/3428276

1 INTRODUCTION

The Dependent Object Types (DOT) calculus has been proposed as a formal foundation for the Scala

programming language. It has been proven sound and the proof has been mechanically verified

using Coq [Amin et al. 2016; Rapoport et al. 2017; Rapoport and Lhoták 2019; Rompf and Amin

2016]. Nevertheless, unsoundness has been discovered in Scala because, as a core calculus, DOT

does not model all features of the full language, in this case specifically null references [Amin and

Tate 2016]. When null references are used to represent missing values, they are easily modeled as a

special value of an Option type, but it is challenging to model the use of null references as a default

value for uninitialized fields of objects. The design of type systems and static analyses to ensure

safe initialization of objects is an active area of research [Fähndrich and Xia 2007; Qi and Myers

2009; Servetto et al. 2013; Summers and Mueller 2011b]. To make it possible to model and study

object initialization in the context of the DOT calculus, Kabir and Lhoták [2018] defined 𝜅DOT, an

extension of the calculus with constructors and mutable fields.

Authors’ addresses: Ifaz Kabir, University of Alberta, Canada, ikabir@ualberta.ca; Yufeng Li, University of Waterloo, Canada,

yufeng.li@uwaterloo.ca; Ondřej Lhoták, University of Waterloo, Canada, olhotak@uwaterloo.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART208

https://doi.org/10.1145/3428276

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3428276
https://doi.org/10.1145/3428276

208:2 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

In this paper, we propose 𝜄DOT, a type and effect system for safe initialization in𝜅DOT. The 𝜄DOT

calculus is informally inspired by ideas from two previous systems, Freedom Before Commitment

(FBC) [Summers and Mueller 2011b] and Delayed Types (DT) [Fähndrich and Xia 2007]; in return,

our mechanized proof strengthens the formal foundations of these systems. One of the key ideas

in FBC is to classify every object as either free, meaning that some of its fields might not have

been initialized1, or committed, meaning that all of its fields are initialized and, transitively, all

objects reachable from those fields are also committed. A technically tricky aspect is to soundly

identify a set of objects that can all be considered committed when initialization of some object

finishes, and the structure of the existing hand-written proofs makes them difficult to mechanize in

a proof assistant. The DT system is defined in terms of splitting the heap into a set of timed regions.

Each region is associated with a time at which it will be merged into the main region called Now.

The static type system accumulates a system of constraints between these times, and a pointer is

allowed to cross a region boundary only if the system can prove that the region containing the

pointer will be merged no earlier than the region into which the pointer points. Although there is

no mechanized soundness proof for the DT system, we show that the informal idea of splitting

the heap into subheaps is convenient for mechanized reasoning about the tricky relationships

between partially initialized objects in FBC. Although we use the idea of subheaps from DT, we

show that the complexity of time variables and constraints between them is not necessary to model

the simpler invariants of FBC. In particular, to express FBC, it is sufficient to prohibit pointers

crossing between any of the subheaps other than the committed Now heap, which we call free

subheaps, removing the need for constraints on the commitment times of pointers.

The 𝜄DOT system is more than just a mechanized version of FBC applying ideas from DT, which

are both calculi for traditional object-oriented languages like Java and C#. In particular, following

Scala and DOT, 𝜄DOT supports path-dependent types, which can be sound only if uninitialized

paths can be ruled out. The DOT calculi of Amin et al. [2016]; Rompf and Amin [2016] side-step this

issue by supporting only variable-dependent types, rather than fully path-dependent types. The

pDOT calculus of Rapoport and Lhoták [2019] supports fully path-dependent types, but achieves

soundness by requiring pre-existing values for all fields before an object is created, ruling out cyclic

data structures involving top level objects. These existing calculi all make simplifying assumptions

about fields that are inconsistent with the semantics of fields and field initialization in Scala. The

𝜅DOT calculus of Kabir and Lhoták [2018] enhances DOTwith a faithful model of Scala constructors

and field initialization. However, 𝜅DOT does not statically detect the possibility of initialization

errors; 𝜅DOT models null fields using a bottom-typed non-terminating term and Scala programs

with incorrect initialization diverge when translated into 𝜅DOT.

The 𝜄DOT system is composed of three complementary concepts. First, 𝜄DOT has a type system

based on the type system of𝜅DOT, which is in turn based on the type system of DOT. The techniques

for reasoning about path-dependent types from DOT [Amin et al. 2016; Rapoport et al. 2017; Rompf

and Amin 2016] generally apply to 𝜄DOT as well; we focus our attention in this paper to aspects

specific to initialization. Second, 𝜄DOT has an effect system that models, within a constructor, which

fields of the object being constructed have already been initialized and which have not. Third, 𝜄DOT

ensures that objects are transitively initialized using an initialization system that splits the heap

into subheaps and enforces invariants about pointers that cross subheap boundaries.

1An object may be free even though all its fields are initialized if it is not transitively committed. Further, even if all fields

transitively reachable from the object are initialized at the current time, the object may still be free it if can potentially

point to an uninitialized object at a future point.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:3

1 class Fruit (tr : Tree) {

2 val tree : Tree = tr

3 }

4 class Tree(fr : Fruit) {

5 val fruit : Fruit = fr

6 }

7 val mango : Fruit = new Fruit(mangoTree)

8 val mangoTree : Tree = new Tree(mango)

9 val fr = mangoTree.fruit . tree . fruit

10 // java . lang . NullPointerException

(a) Bad Initialization

11 class Fruit (tr : Tree) {

12 val tree : Tree = tr

13 }

14 class Tree {

15 val fruit : Fruit = new Fruit(this)

16 }

17 //

18 val mangoTree : Tree = new Tree

19 val fr = mangoTree.fruit . tree . fruit

20 // no errors

(b) Good Initialization

21 class Fruit [T](tr : Tree { type F = T }) {

22 type A = T

23 val tree : Tree { type F = T } = tr

24 }

25 class Tree {

26 type F

27 val fruit : Fruit [this . F] = new Fruit[this . F](this)

28 }

29 val mangoTree : Tree = new Tree

30 val fr = mangoTree.fruit . tree . fruit

(c) Path-Dependent Initialization

Fig. 1. Object Initialization in Scala

This paper makes the following contributions:

• Taking inspiration from DT, we recast the ideas underlying the FBC system using the simpler

intuition of free and committed subheaps, which is amenable to mechanized proof.

• We define the 𝜄DOT extension of the 𝜅DOT calculus that guarantees safe initialization of

objects. The 𝜅DOT calculus more faithfully models field initialization in Scala than previous

DOT calculi.

• We prove 𝜄DOT sound. Specifically, our proof guarantees that an 𝜄DOT program never reads

an uninitialized field of an object.

• Our safety proof is mechanically verified using the Coq proof assistant, and to the best of

our knowledge is the first mechanically verified proof of the FBC system. Our Coq proof can

be found at https://git.io/dot-init.

2 BACKGROUND

Consider the Scala code fragments in Figure 1. In Figures 1a to 1c, we attempt to create an object of

type Tree, which we name mangoTree, with a field fruit of type Fruit. The Fruit object has a field fruit

that recursively points back to the mangoTree.

The code in Figure 1a is incorrect! It attempts to pass themangoTree variable to the Fruit constructor.

When it is passed to the Fruit constructor, mangoTree has not been initialized yet and a null pointer

is passed instead. Thus tree field of mango is null and this later leads to a NullPointerException. The

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

https://git.io/dot-init

208:4 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

31 trait Tree {

32 type F

33 def fruit : Fruit { type A = this . F }

34 }

35 trait Fruit {

36 type A

37 def tree : Tree { type F = this .A }

38 }

39 def kTree(_ : Any) : Fruit =

40 new { tr =>

41 type F = tr .F

42 def fruit : Fruit { type A = tr .F } =

43 new { fr =>

44 type A = tr .F

45 def tree = tr

46 }

47 }

48 val mangoTree : Tree = kTree(new Object)

49 val fr1 = mangoTree.fruit

50 val tr1 = fr1 . tree

51 val fr2 = tr1 . fruit

(a) Example in WadlerFest DOT

52 def omega(a: Any): Nothing = omega(a)

53 val kFruit = constructor (tr : Tree) { fr =>

54 type A = tr .F

55 var def tree : Tree { type F = T } =

56 omega(omega)

57 } {

58 fr => fr . tree = tree

59 }

60 val kTree = constructor { tr =>

61 type F

62 var def fruit : Fruit { type A = F } =

63 omega(omega)

64 } { tr =>

65 val fr = new kFruit(tr)

66 tr . fruit = fruit

67 }

68 val mangoTree : Tree = new kTree()

69 val fr1 = mangoTree.fruit

70 val tr1 = fr1 . tree

71 val fr2 = tr1 . fruit

(b) Example in 𝜅DOT

Fig. 2. Examples

code in Figure 1b rectifies this by passing only non-null pointers to constructors. But the types in

this code fragment do not enforce the invariant that mangoTree and mangoTree.fruit.tree are the same

tree. The type system allows mangoTree.fruit.tree to point to any Tree.

Figure 1c uses path-dependent types to enforce the invariant that the Fruit of every Tree points

back to the same Tree. The Tree type consists of a type member F and a field fruit of the dependent

type Fruit[this.F]. The Fruit[T] type consists of a field tree of type Tree, but refined with the type

member type F = T. Since DOT does not have generic parameters, we will use the type member A

to emulate generics in later DOT examples. In the Tree constructor, we leave the type member F

abstract, which means that every Tree has a unique type member this.type.F. In the Fruit constructor,

mismatch between the parameter T and the argument, such as new Fruit[mangoTree](new Tree) or

new Fruit[Any](mangoTree), would result in type errors. In Figure 1c, the object mangoTree has an

an abstract type member called F and a field with a path-dependent type of Fruit[mangoTree.F].

Fruit[mangoTree.F] in turn has a field tree, which must have the same type as mangoTree. Since the

abstract type member mangoTree.F is unique to mangoTree, the field tree of Fruit[mangoTree.F] can

only be initialized with mangoTree.

2.1 Formalizing Scala

Path-dependent types are one of the distinguishing features of Scala [Odersky et al. 2006]. Finding

a provably type-safe calculus that features path-dependent types has proven to be difficult [Amin

et al. 2014], and after a long search, Amin et al. [2016] described the WadlerFest DOT calculus.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:5

While it features path-dependent types, several features of Scala are not modelled by WadlerFest

DOT, so the example from Figure 1c cannot be expressed directly. However, with the following

adjustments, a similar example can be encoded as shown in Figure 2a using a Scala-like syntax.2

Since WadlerFest DOT does not feature constructors, we define kTree instead as a function that

returns an object. In WadlerFest DOT, a field behaves like a Scala method in that it contains a term

that is re-evaluated each time the field is read. Accordingly, in the object returned by kTree, we

write field declarations using def instead of val. Each time the field read tr1.fruit is evaluated, a new

object is allocated. Therefore, fr1 and fr2 in Figure 2a refer to two distinct Fruit objects.

In WadlerFest DOT, we encode type members that remain abstract as type members assigned to

themselves. Thus the abstract type member F in line 26 of Figure 1c is encoded as line 41. Notice

that, for any Tree with an abstract type member F, the type of the fruit field is path dependent on

the Tree itself. So a Fruit assigned to such a field must refer to the Tree in its definition, so it can

only be defined in places where we can refer to the Tree, such as the body of the Tree or after the

Tree has been let bound. But since fields in WadlerFest DOT are not mutable, if we define the Fruit

after the Tree has been let bound, we cannot assign a reference to the Fruit to the fruit field of the

Tree, so the Fruit must be defined in the body of the Tree.

From the above, we can see that WadlerFest DOT has at least the following differences from

Scala: it has no notion of field mutation, it does not have a notion of constructors, and it does

not allow mutual recursion between top-level objects. Not having field mutation and constructors

means that WadlerFest DOT makes no distinction between allocating an object and initializing

the allocated object. This means that when an object is allocated, it can only point to previously

allocated top-level objects, and hence there cannot be recursion between top level objects.

To overcome some of the above limitations of WadlerFest DOT’s lazily evaluated fields, Kabir

and Lhoták [2018] introduced 𝜅DOT. Figure 2b shows an encoding of the example from Figure 1c

in 𝜅DOT.3 𝜅DOT eschews anonymous objects for first-class constructors. Fields in 𝜅DOT must

still be allocated with a term, which is re-evaluated each time the field is read, but fields can be

mutated later to refer to heap locations (which do not evaluate further), as done in constructor

bodies in the shown code fragment. Therefore, we write field declarations using var def. 𝜅DOT does

not have a built-in notion of an uninitialized field or a null value, so in this example, we set the

initial term of each field to omega(omega), a non-terminating term with type Nothing.4 When new

kTree() in line 68 is evaluated, the fruit field of mangoTree contains a location of a Fruit object, and

unlike the WadlerFest DOT version, here fr1 and fr2 in lines 69 and 71 refer to the same object.

2.2 Freedom Before Commitment

The FBC system [Summers and Mueller 2011b] adds an initialization system to Java-like languages

by adding initialization qualifiers to object references. Here we discuss the fragment of FBC without

nullable types.

In the system, object references are qualified to be either free or committed. The qualifier free

means that the object is under initialization and it is not safe to read a field of the object and

treat the address that is read as non-null. The committed qualifier means that the object is fully

initialized and reading a field would return a non-null address of a (committed) object. The type

system enforces the following constraints: a field of a committed object can only be assigned an

address of a committed object, and fields of a free object are not read.

2WadlerFest DOT does not directly feature traits and type refinement, but Amin et al. [2016] show how they can be encoded.
3traits and type refinement can be encoded into 𝜅DOT similar to how they are encoded in WadlerFest DOT.
4If the fields were accessed before they were mutated with a location, the program would diverge.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:6 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

Free

Free

Free

C
o
m
m
itte
d

Fig. 3. Heap in Freedom Before Commitment

Inside a constructor, FBC has a definite assignment analysis that ensures that all fields of the

object being constructed are assigned non-null addresses. Constructors treat the this variable as

free. Objects returned from a constructor are considered committed if the constructor was passed

no arguments or only committed arguments, and otherwise constructors return free objects.

Convention: To avoid confusing free subheaps and the notion of free (i.e. unbound) variables,

we use the convention that free written in monospace font refers to free subheaps.

2.3 Subheap Formulation

Convention: We will often write assigning to an object to mean assigning to a field of the object. We

will also write that a constructor call or field read returns an object to mean that the constructor or

field read returns a reference to the object.

In our subheap formulation of FBC, we conceptually split the heap into subheaps: one committed

subheap containing only fully initialized objects and a stack of free subheaps that contain partially

initialized objects. Figure 3 shows a diagram of such a heap, where the solid arrows show possible

links in the heap and the dotted arrows show permitted writes. Only the following field pointers

are permitted: a field may contain a pointer to a fully initialized object in the committed heap or

to an object in the same subheap. The following writes are permitted: to a committed object, we

may assign only a committed object; to a free object in the topmost free subheap, we may assign

either a committed object or a free object in the same subheap; to a free object in a free subheap

other than the topmost, no field writes are allowed. Field writes in a free subheap other than the

topmost are only allowed once all subheaps above it are promoted to being part of the committed

heap and it becomes the topmost subheap. We may only read fields of objects in the committed

subheap, which return committed objects. When objects in the topmost free subheap are fully

initialized, the entire subheap is promoted to be part of the committed subheap, and the next free

subheap becomes available for allocations and field writes.

We model the FBC constructor calls as follows. If a constructor is called with only committed

arguments, a new subheap is pushed onto the stack and the new object is allocated on the new

subheap. The object will be fully initialized once the constructor completes, so the new subheap can

be committed. On the other hand, if a constructor is called with a free argument, the new object is

allocated in the topmost existing free subheap. The object becomes fully initialized only when the

free argument becomes fully initialized, i.e., when its existing subheap is committed. The definite

assignment analysis ensures that all fields in a subheap are fully initialized before being promoted.

Note that the subheaps are conceptual and there are no runtime costs related to heaps being

allocated. There is only one flat runtime heap, but the type and effect system assigns different

objects to different subheaps.

For a concrete illustration of these ideas, consider the example in Figure 4, which builds on the

example from Figure 1c and shows a case of nested object initialization. In this example, we first

call the constructor TreeFruitPair, which calls the constructor Tree, which in turn calls the Fruit

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:7

72 class TreeFruitPair {

73 val tree : Tree

74 = new Tree

75 val fruit : Fruit [tree .F]

76 = tree . fruit

77 }

78

79 val depPair : TreeFruitPair

80 = new TreeFruitPair

Fig. 4. Nested Initialization

f { tree = t }

t { fruit = f }

depPair { tree = null

fruit = null } (empty)

Stack of free subheaps Committed subheap

(a) Before Tree constructor returns

depPair { tree = t

fruit = f }

t { fruit = f }

f { tree = t }

Stack of free subheaps Committed subheap

(b) Before TreeFruitPair constructor returns

Fig. 5. Heaps corresponding to Figure 4

constructor with this as the argument, passing in a reference to the Tree under construction. Then,

when the Tree object has been constructed, the TreeFruitPair constructor reads the fruit field in

line 76. In order for this read to succeed, the TreeFruitPair constructor expects the inner constructor

call to return a fully initialized Tree whose field fruit can be read and is non-null.

Below we step through the initialization process for the code in Figure 4. First, the stack of free

subheaps is empty, so the call to the TreeFruitPair constructor in line 80 creates a free subheap for

the new object, which we call depPair. When the TreeFruitPair constructor makes a call to the Tree

constructor on line 74, no free arguments are provided (in fact it is not called with any arguments

at all). Thus, a new free subheap is allocated for the object, say t, created by the call to the Tree

constructor. These two free subheaps are shown in Figure 5a. The Tree constructor in Figure 1c

calls the Fruit constructor, passing itself as an argument. Since this argument, the tree, is considered

free, we do not allocate a new free subheap when the Fruit constructor is invoked; the new Fruit f

is allocated in the same free subheap as the Tree t. Figure 5a shows the state of the heap at this

point in time. Note that as stated previously, no pointers are allowed between objects in different

free subheaps. In particular, the tree and fruit fields in depPair are still null. After the call to the

Tree constructor returns to the TreeFruitPair constructor, the topmost free subheap consisting of

t and f is promoted to committed, as shown in Figure 5b. This is justified because we know that

all objects in this free subheap must be transitively initialized: the definite assignment analysis

concludes that every field has been assigned to point to some object, and our invariant ensures

that pointers in the free subheap point either back into the subheap itself or into the committed

subheap, whose objects are all transitively initialized.

Now, the only remaining free subheap is the one containing depPair, as observed in Figure 5b.

Since t and f are now in the committed heap, the fields of depPair can be updated to point to them.

When the TreeFruitPair constructor returns, a definite assignment analysis shows that all fields of

depPair have been assigned, so we promote the remaining free subheap to be committed.

Convention:We use free object to mean object in a free subheap, and committed object to mean

object in a committed subheap.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:8 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

3 SEMANTICS

We now present the static and dynamic semantics of 𝜄DOT.

3.1 Syntax

The syntax for 𝜄DOT is shown in Figure 6. Shading indicates the differences from 𝜅DOT. We need

to refer to many different kinds of stacks in our syntax, and we use the convention that any 𝑠

following a capital letter refers to a stack, e.g. 𝐸𝑠 represents a stack of elements of kind 𝐸.

𝜄DOT is an object-oriented calculus with first-class functions and constructors. We use the

word literal to mean syntax used to define functions and constructors. The term language uses an

ANF-style grammar and features function and constructor calls, field reads and writes, and two

kinds of let bindings: the first binds function and constructor literals and the second binds terms.

𝜄DOT has the same types as 𝜅DOT with some additional initialization qualifier annotations on

constructor types. For the reader’s benefit, we reproduce the descriptions by Rapoport et al. [2017]

with appropriate modifications and additions. An 𝜄DOT type can be one of the following:

• A dependent function type ∀(𝑥 : 𝑆)𝑇 is the type of a function with a parameter 𝑥 of type 𝑆 ,

and with the return type 𝑇 , which can refer to the parameter 𝑥 .

• A (dependent) constructor type 𝐾 (
„

𝑧 : 𝑖 𝑇 , 𝑧1 : 𝑈) is the type of a constructor with input param-

eters #„𝑧 of qualified types
„

𝑖 𝑇 , and with the return type 𝑈 , which can refer to the parameters
#„𝑧 and the self-variable 𝑧1. The initialization qualifiers

#„

𝑖 dictate the initialization state of the

inputs to the constructor. The initialization state of a partially initialized input is free and

the initialization state of a fully initialized input is committed.

• A recursive type 𝜇 (𝑥 : 𝑇) declares an object type 𝑇 which can refer to its self-variable 𝑥 .

• A (bounded) field declaration {𝑎 : 𝑆..𝑇 } states that the field labelled 𝑎 has a setter type 𝑆 and

a getter type 𝑇 . The setter type 𝑆 means that we may assign locations of type 𝑆 to the field.

The getter type 𝑇 means that reading the field 𝑎 returns an address of type 𝑇 .

• A type declaration {𝐴 : 𝑆..𝑇 } specifies that an abstract type member 𝐴 is a subtype of𝑇 and a

supertype of 𝑆 .

• A type projection 𝑥 .𝐴 is the type assigned to the type member labelled 𝐴 of the object 𝑥 (ANF

allows type projection only on variables).

• An intersection type 𝑆 ∧𝑇 is the most general subtype of both 𝑆 and 𝑇 .

• The bottom type ⊥ and the top type ⊤ correspond to the bottom and top of the subtyping

lattice, and are analogous to Scala’s Nothing and Any.

Constructors and constructor field definitions in 𝜄DOT deserve special attention. In a constructor

𝜅 (
„

𝑧 : 𝑖 𝑇 , 𝑧1 : 𝑈) {𝑑} 𝑡 , #„𝑧 are the input parameters with qualified input types
„

𝑖 𝑇 and 𝑧1 represents

the this/self variable found in other object-oriented languages. The definitions 𝑑 declare the field

and type members of objects which will be created by the constructor. Since objects in 𝜄DOT are

dependently and recursively typed, the type member definitions in 𝑑 as well as the output type 𝑈

can refer to the parameters #„𝑧 and 𝑧1.

In 𝜅DOT, constructor field definitions were of the form {𝑎 = 𝑡 ′}, where 𝑡 ′ was an initial term that

could refer to the input parameters #„𝑧 and the this variable 𝑧1. When a constructor with the field

definition {𝑎 = 𝑡 ′} was called, an object with the field {𝑎 = 𝑡 ′} was allocated, which could later be

mutated. Thus, fields of objects in 𝜅DOT were never uninitialized, side-stepping the initialization

problem. In 𝜄DOT, {𝑎 = null} is syntax for an uninitialized field; null is neither a literal nor a term.

Definitions in a constructor (i.e. the 𝑑 in 𝜅 (𝑧 : 𝑄, 𝑧1 : 𝑈) {𝑑}), can only have field definitions of the

form {𝑎 = null}. Type member definitions ({𝐴 = 𝑇 }) in constructors and objects in 𝜄DOT are the

same as those in 𝜅DOT, which in turn are the same as in WadlerFest DOT objects.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:9

Labels and Variables

𝑎, 𝑏, 𝑐 Term Labels

𝐴, 𝐵,𝐶 Type Labels

𝑦 Locations

𝑧 Abstract Variables

𝑥, 𝑘 F 𝑦 | 𝑧 Variables

Constructor Definitions

𝑑 F
{

𝑎 = null
}

Field Definition

| {𝐴 = 𝑇 } Type Definition

| 𝑑 ∧ 𝑑 ′ Aggregate Definition

Heap Definitions

ℎ𝑑 F {𝑎 = null} Null Field

| {𝑎 = 𝑦} Non-Null Field

| {𝐴 = 𝑇 } Type Definition

| ℎ𝑑 ∧ ℎ𝑑 ′ Aggregate Definition

Terms

𝑡,𝑢 F 𝑥 Variable

| new 𝑘 (#„𝑥) Constructor Call

| 𝑥 .𝑎 Field Read

| 𝑥 .𝑎 ≔ 𝑥1 Field Write

| 𝑥 𝑥1 Application

| let 𝑧 : 𝑇 = 𝑙 in 𝑢 Literal Binding

| let 𝑧 : 𝑇 = 𝑡 in 𝑢 Let Binding

Literals and Heap Items

𝑙 F 𝜆 (𝑧 : 𝑇) .𝑡 Lambda

| 𝜅 (
„

𝑧 : 𝑄 , 𝑧1 : 𝑈) {𝑑} 𝑡 Constructor

ℎ F 𝑙 Literal

| 𝜈 (𝑧 : 𝑇) ℎ𝑑 Object

Types

𝑆,𝑇 ,𝑈 F ⊤ Top Type

| ⊥ Bottom Type

| ∀(𝑧 : 𝑆)𝑇 Dependent Function

| 𝜇 (𝑧 : 𝑇) Recursive Type

| {𝑎 : 𝑆..𝑇 } Field Declaration

| {𝐴 : 𝑆..𝑇 } Type Declaration

| 𝑥 .𝐴 Type Projection

| 𝑆 ∧𝑇 Type Intersection

| 𝐾 (
„

𝑧 : 𝑄 , 𝑧1 : 𝑇) Constructor Type

Initialization Qualifiers, Qualified Types

𝑖 F free Uninitialized

| committed Initialized

𝑄 F 𝑖 𝑇 Qualified Type

Effects, Variable Sets, Effects of Heap

Definitions

𝐸 F ∅ | 𝐸 ∪ {(𝑥, 𝑎)} Effects

eff (𝑥, ℎ𝑑) F {(𝑥, 𝑎) | {𝑎 = null} ∈ ℎ𝑑}

Effects of Heap Definitions

Contexts

Γ F 𝜀 | Γ, 𝑥 : 𝑇 Typing Context

Δ F 𝜀 | Δ, 𝑥 : 𝑖 Initialization Context

E F 𝜀 | E, 𝑥 : {𝑎1, . . . , 𝑎𝑛} Effect Context

Frames, Stacks, Heaps, and Configurations

𝐹 F let 𝑧 : 𝑇 = □ in 𝑡 Let Frame

| return 𝑦 Return Frame

𝐹𝑠 F 𝜀 | 𝐹 :: 𝐹𝑠 Frame Stack

𝐸𝑠 F 𝜀 | 𝐸 :: 𝐸𝑠 Effects Stack

E𝑠 F 𝜀 | E :: E𝑠 Effect Context Stack

Σ F · | Σ, 𝑦 = ℎ Heap

𝑐 F ⟨𝑡 ; 𝐹𝑠; Σ⟩ Configuration

𝑛 F ⟨𝑦; 𝜀; Σ⟩ Answer

Fig. 6. Syntax of 𝜄DOT

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:10 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

𝑦 = 𝜈 (𝑧 : 𝑇) . . .
{

𝑎 = 𝑦 ′
}

. . . ∈ Σ

⟨𝑦.𝑎; 𝐹𝑠; Σ⟩ ↦−→
〈

𝑦 ′ ; 𝐹𝑠; Σ
〉 (Project)

𝑦 = 𝜈 (𝑧 : 𝑇) . . . {𝑎 = null} . . . ∈ Σ ∨ 𝑦 = 𝜈 (𝑧 : 𝑇) . . . {𝑎 = 𝑦 ′} . . . ∈ Σ

Σ
′
= Σ [𝑦 = 𝜈 (𝑧 : 𝑇) . . . {𝑎 = 𝑦1} . . .]

⟨𝑦.𝑎 ≔ 𝑦1; 𝐹𝑠; Σ⟩ ↦−→ ⟨𝑦1; 𝐹𝑠; Σ
′⟩

(Assignment)

𝑦 = 𝜆 (𝑧 : 𝑇) .𝑡 ∈ Σ

⟨𝑦 𝑦1; 𝐹𝑠; Σ⟩ ↦−→ ⟨[𝑦1/𝑧] 𝑡 ; 𝐹𝑠; Σ⟩
(Application)

#„𝑦2 =
„𝑦,𝑦1

#„𝑧2 =
„𝑧, 𝑧1

𝑘 = 𝜅 (
„

𝑧 : 𝑇, 𝑧1 : 𝑈) {𝑑} 𝑡 ∈ Σ

⟨new 𝑘 (#„𝑦) ; 𝐹𝑠; Σ⟩ ↦−→
〈

„

[𝑦2/𝑧2]𝑡 ; return 𝑦1 :: 𝐹𝑠; Σ, 𝑦1 = 𝜈
(

𝑧1 :
„

[𝑦/𝑧]𝑈
)

„

[𝑦2/𝑧2]𝑑
〉

(New)

⟨𝑦1; return 𝑦 :: 𝐹𝑠; Σ⟩ ↦−→ ⟨𝑦; 𝐹𝑠; Σ⟩ (Return)

⟨𝑦; let 𝑧 : 𝑇 = □ in 𝑡 :: 𝐹𝑠; Σ⟩ ↦−→ ⟨[𝑦/𝑧] 𝑡 ; 𝐹𝑠; Σ⟩ (Let-Loc)

⟨let 𝑧 : 𝑇 = 𝑙 in 𝑡 ; 𝐹𝑠; Σ⟩ ↦−→ ⟨[𝑦/𝑧] 𝑡 ; 𝐹𝑠; Σ, 𝑦 = 𝑙⟩ (Let-Lit)

⟨let 𝑧 : 𝑇 = 𝑡 in 𝑢; 𝐹𝑠; Σ⟩ ↦−→ ⟨𝑡 ; let 𝑧 : 𝑇 = □ in 𝑢 :: 𝐹𝑠; Σ⟩ (Let-Push)

Fig. 7. Operational Semantics for 𝜄DOT

3.2 Operational Semantics

The operational semantics is expressed using an abstract machine whose transitions are defined in

Figure 7. A configuration ⟨𝑡 ; 𝐹𝑠; Σ⟩ consists of the focus of execution 𝑡 , a frame stack 𝐹𝑠 representing

the current evaluation context, and a heap Σ. Heaps and frame stacks are described below.

Heap definitions are lists of type definitions, null fields, or non-null fields. A type definition

{𝐴 = 𝑇 } declares the type label𝐴 as an alias for the type𝑇 .Null fields {𝑎 = null} are used to represent

an uninitialized field, and non-null fields {𝑎 = 𝑦} represent a field that contains the location𝑦. Objects

𝜈 (𝑧 : 𝑇) ℎ𝑑 are a type annotation together with a heap definition. The type annotation 𝑇 can refer

to the recursive this variable 𝑧. Heap items are objects or literals (functions/constructors), and a

heap is a map from locations to heap items. In a heap binding of an object 𝑦 = 𝜈 (𝑧 : 𝑇) ℎ𝑑 , the

definitions in ℎ𝑑 can refer to any location in the heap including 𝑦, and the type annotation 𝑇 can

refer to any location in the heap other than 𝑦.

Let frames represent the continuation of executing let bindings of terms and return frames

represent the continuation of constructor calls. A frame stack represents an evaluation context.

The operational semantics for 𝜄DOT is similar to that of 𝜅DOT. The main difference is that field

reads return variables rather than arbitrary terms. In addition, field assignment replaces a null or a

location instead of replacing an arbitrary term.

In 𝜄DOT, we do not allow reading a null field as a machine operation, so a variable can never refer

to null. This is different from Scala, where variables can refer to null. Amin and Tate [2016] show

how this can trick the Scala type system into believing null is an object containing bad bounds,

making the type system unsound. We discuss 𝜄DOT adaptations of their example in Section 7.1.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:11

3.3 Type System

The typing rules for 𝜄DOT are very similar to those of 𝜅DOT and other DOT calculi. Due to space

limitations, and because typing for DOT calculi has been covered in much detail elsewhere [Amin

et al. 2016; Kabir and Lhoták 2018; Rapoport et al. 2017; Rapoport and Lhoták 2019], we describe

the typing rules in a companion technical report [Kabir et al. 2020]. However, unlike other DOT

calculi, the 𝜄DOT type system is not sound on its own. The unsoundness comes from the fact that

the type system does not prevent attempts to read a null field, and thus the abstract machine can

get stuck without returning an answer.

3.4 Initialization Invariants

In the FBC system, references to items in the heap are given an initialization type which can be

one of free or committed5. References to objects that can potentially lead to a null reference via

transitive field reads are given the type free. References to objects which are fully initialized, i.e.

objects which do not lead to a null via transitive field reads, are given the type committed.

Given our subheap formulation of FBC, we need to ensure the following.

(1) Free objects are not reachable (via field reads) from committed objects.

(2) Committed objects are fully initialized.

For invariant 1, we ensure the following.

(3) A reference to a free object is never assigned to a field of a committed object.

(4) A reference to a free object is allowed to be assigned to a field of a free object only if both

objects are in the top-most free subheap.

(5) Function bodies do not refer to objects that are part of a free subheap.

For invariant 2 we ensure the following.

(6) A constructor initializes all fields of the this/self variable of the constructor.

(7) All fields of all objects in a free subheap are initialized before the subheap is promoted to be

part of the committed heap.

Invariant 5 deserves some explanation. Suppose𝑦comm is a reference to an object in the committed

subheap and 𝑦free1 and 𝑦free2 are references to objects in (possibly different) free subheaps. We

want to prevent function bodies from making an assignment of the form 𝑦comm .𝑎 := 𝑦free1 because

calling the function before the object referred to by 𝑦free1 is promoted to be part of the committed

heap would violate invariant 3. We additionally want to prevent function bodies from making

assignments of the form 𝑦free1 .𝑎 := 𝑦free2, because if the function is called after 𝑦free1 becomes

part of the committed subheap, but 𝑦free2 is still free, we would again violate invariant 3. The

above is achieved by disallowing variables of initialization type free from appearing in function

bodies6, i.e. variables occurring free (unbound) in functions and constructors are only bound to

variables of initialization type committed. Functions are allowed to call constructors which allocate

new free subheaps, but functions cannot modify previously allocated free subheaps.

𝜄DOT has an effect system and an initialization system based on FBC and together they consist

of the following four judgments. We will describe the judgments in detail in Sections 3.5 and 3.6.

• ⊢𝑒 𝑡 : 𝐸 says that the term 𝑡 has the effects 𝐸. Here effects track which fields will be initialized

when 𝑡 is executed, and the effect judgment will be used in constructor bodies to ensure

invariant 6 and in typing our abstract machine to ensure invariant 7.

5The system of Summers and Mueller [2011b] additionally features unclassified as an initialization type, a supertype of

free and committed. It is useful when the type system features nullable types and field reads on free types are allowed.

Our Coq mechanization does support unclassified, which is used in some of the extensions discussed in Section 6.
6We do allow variables of type free to appear in type annotations and in type member definitions. This allows functions to

have types dependent on such variables.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:12 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

Γ;Δ ⊢𝑖 𝑡 : 𝑖 (terms)

Initialization typing

(Figure 11)

⊢𝑒 𝑡 : 𝐸

Definite assignment

(Figure 9)

Γ;Δ ⊢𝑐 𝑡 (terms)

Well-committed terms

(Figure 10)

Γ;Δ ⊢𝑐 𝑙 (literals)

Well-committed literals

(Figure 10)

(Init-Comm) Committed terms

(Init-New) Constructor calls

(Init-Lit)

Literal Bindings

(Comm-Lit)

Literal Bindings

(Comm-Fun)

Function Bodies

(Comm-Con)

Constructor Bodies

(Comm-Con)

Constructor Bodies

Fig. 8. Dependency of 𝜄DOT typing judgments

• Γ;Δ ⊢𝑖 𝑡 : 𝑖 states that in the typing context Γ and initialization context Δ, the term 𝑡 has

initialization state 𝑖 . This means that 𝑡 is well-typed according to the initialization system,

i.e. it only does free-to-free assignments between variables in Δ or newly allocated free

objects. Additionally, if 𝑡 evaluates to a location 𝑦, the location will be in a free subheap or

the committed subheap depending on 𝑖 . This judgment is used inside constructor bodies to

allow assigning to the this/self variable while ensuring that invariant 3 is satisfied.

• Γ;Δ ⊢𝑐 𝑡 says that the term 𝑡 does not contain free (i.e. unbound) variables that are qualified as

free in Δ, does not try to allocate objects to the top-most free subheap, and has initialization

type committed. For every free (i.e. unbound) variable 𝑥 in the term 𝑡 , Δ(𝑥) = committed,

constructor calls in 𝑡 allocate new free subheaps and evaluate to committed references, and

if 𝑡 evaluates to a location 𝑦, 𝑦 will have initialization state committed. This judgment will

be used to type function bodies to ensure invariant 5.

• Γ;Δ ⊢𝑐 𝑙 states that the literal 𝑙 is safe to be allocated on the committed subheap. For every

free (i.e. unbound) variable 𝑥 in 𝑙 , Δ(𝑥) = committed. Therefore, the function or constructor 𝑙

does not perform writes on variables that are free in Δ unless they are passed as arguments.

Since terms can let-bind functions and constructors, functions can be let-bound in constructor

bodies, and constructors can be let-bound in function bodies, the above judgments are interdepen-

dent. Figure 8 shows a dependency graph of the above judgments.

We will call assignments of the form 𝑦free1.𝑎 := 𝑦free2 free-to-free assignments. Suppose 𝑦comm2
is a reference to an committed object. Assignments of the form 𝑦comm .𝑎 := 𝑦comm2, which we call

committed-to-committed assignments, are always safe. Committed-to-committed assignments do

not cause objects in the committed subheap to become less initialized (invariant 2).

3.5 Effect System

The effect system is used to conservatively track definite assignments. Effects are sets of pairs

(𝑥, 𝑎) where 𝑥 is a reference to an object and 𝑎 is a field label. If a term 𝑡 has the effect (𝑥, 𝑎),

then evaluating 𝑡 will definitely assign a value to field 𝑎 of 𝑥 . If a constructor is allocating an

object with fields {𝑎1, . . . , 𝑎𝑛}, the initialization system requires the constructor body to have the

effects {(this, 𝑎1), . . . , (this, 𝑎𝑛)}. Figure 9 shows the effect system in 𝜄DOT. The (Ignore-Eff) rule

conservatively gives at least the empty set of definite assignments to every term. The (Asgn-Eff)

rule tracks single assignments. The (Lit-Eff) rule is used to track assignments made by the body of

literal bindings. The (Let-Eff) rule is used to group together the effects of 𝑡 and 𝑢 in let 𝑥 = 𝑡 in 𝑢.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:13

⊢𝑒 𝑡 : ∅ (Ignore-Eff)

𝑥 ∉ fv (𝐸) ⊢𝑒 𝑢 : 𝐸

⊢𝑒 let 𝑥 = 𝑙 in 𝑢 : 𝐸
(Lit-Eff)

⊢𝑒 𝑥 .𝑎 ≔ 𝑥1 : {(𝑥, 𝑎)} (Asgn-Eff)

⊢𝑒 𝑡 : 𝐸1 𝑥 ∉ fv (𝐸2)

⊢𝑒 𝑢 : 𝐸2

⊢𝑒 let 𝑥 = 𝑡 in 𝑢 : 𝐸1 ∪ 𝐸2
(Let-Eff)

Fig. 9. Definite Assignment in 𝜄DOT

The effect system plays a more central role in the small-step setting of 𝜄DOT than in the original

big-step safety proof of FBC by Summers and Mueller. In our safety proof, we will extend the effect

system to configurations of our abstract machine (Definitions 4.7 to 4.9 and Figure 12). For each

free subheap, we aggregate all the required effects of all objects in the subheap and track whether

they have been satisfied after each step of execution. If the required effects of the subheap have been

satisfied and we have nothing left to execute, then every field in the subheap has been initialized,

and thus it will be safe to promote the subheap to become part of the committed subheap.

3.6 Initialization System

The core problem that the 𝜄DOT initialization system tries to solve is initializing cyclic data-

structures. To create a cycle, we need to allow writes of the form 𝑥1.𝑎 ≔ 𝑥2, where both 𝑥1 and

𝑥2 refer to objects that have some uninitialized fields. But this is unsafe if the object 𝑥1 will be

considered fully initialized before the object 𝑥2. In our subheap formulation of FBC, this happens if

𝑥1 refers to an object in a higher free subheap than the object referred to by 𝑥2. Since the 𝑥1 object

would get promoted to being committed before the 𝑥2 object, we could read the field 𝑥1.𝑎 and treat

the read address as committed although the object referred to by 𝑥2 is still in a free subheap.

In our initialization system, preventing this manifests itself in how we type constructors. A

constructor body can refer both to variables in its enclosing scope, as well as to explicit parameters

of the constructor. We want to prevent a constructor from writing to a variable 𝑥 in its enclosing

scope if 𝑥 has initialization type free since the object referred to by 𝑥 may get promoted to the

committed heap before the constructor is called. If the constructor assumes 𝑥 is free, it is allowed

to assign free locations (such as the this/self variable) to 𝑥 ’s fields. But once 𝑥 is promoted, these

field updates are unsafe. We also want to prevent a constructor from assigning 𝑥 to fields of the

this/self variable, since we may try to promote the this/self variable to be part of the committed

heap before 𝑥 , violating the invariant that there are no references from the committed subheap to

free subheaps (invariant 1). However, the above restriction does not mean that constructors can

never assign the this/self variable to fields of objects in free subheaps. References to free objects

can be used as constructor arguments. When we call a constructor new 𝑘 (𝑥) with 𝑥 free, the

constructed object will be allocated in the same free subheap as 𝑥 and the constructed object will

be promoted to committed at the same time as the object referred to by 𝑥 .

The judgements of the initialization system (Γ;Δ ⊢𝑖 𝑡 : 𝑖 , Γ;Δ ⊢𝑐 𝑡 , and Γ;Δ ⊢𝑐 𝑙) use two contexts,

a typing context Γ to lookup the types of constructors, and an initialization context Δ to lookup

the initialization state of variables. In our subheap formulation, the typing context gives types to

all items in the heap, but the initialization context only gives initialization types to items in the

committed subheap and the top-most free subheap under consideration. Sowe have (𝑥 : free) ∈ Δ

only if 𝑥 refers to an object that belongs to the top-most free subheap, and (𝑥 : committed) ∈ Δ if

𝑥 refers to an item in the committed subheap. This prevents the initialization system from allowing

free-to-free assignments between objects that belong to distinct free subheaps (invariant 4).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:14 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

Δ (𝑥) = committed

Γ;Δ ⊢𝑐 𝑥
(Comm-Var)

Γ;Δ ⊢𝑐 𝑥

Γ;Δ ⊢𝑐 𝑥1

Γ;Δ ⊢𝑐 𝑥 𝑥1
(Comm-App)

Γ;Δ ⊢𝑐 𝑥

Γ;Δ ⊢𝑐 𝑥 .𝑎
(Comm-Read)

Γ;Δ ⊢𝑐 𝑥

Γ;Δ ⊢𝑐 𝑥1

Γ;Δ ⊢𝑐 𝑥 .𝑎 ≔ 𝑥1
(Comm-Asn)

Γ;Δ ⊢𝑐 𝑘 Γ;Δ ⊢𝑐
#„𝑥

Γ ⊢ 𝑘 : 𝐾 (
„

𝑧 : committed𝑇, 𝑧1 : 𝑇)

Γ;Δ ⊢𝑐 new 𝑘 (#„𝑥)
(Comm-New)

Γ;Δ ⊢𝑐 𝑡

Γ, 𝑥 : 𝑇 ;Δ, 𝑥 : committed ⊢𝑐 𝑢

Γ;Δ ⊢𝑐 let 𝑥 : 𝑇 = 𝑡 in 𝑢
(Comm-Let)

Γ;Δ ⊢𝑐 𝑙

Γ, 𝑥 : 𝑇 ;Δ, 𝑥 : committed ⊢𝑐 𝑢

Γ;Δ ⊢𝑐 let 𝑥 : 𝑇 = 𝑙 in 𝑢
(Comm-Lit)

Γ, 𝑧 : 𝑇 ;Δ, 𝑧 : committed ⊢𝑐 𝑡

Γ;Δ ⊢𝑐 𝜆 (𝑧 : 𝑇) .𝑡
(Comm-Fun)

⊢𝑒 𝑡 : eff (𝑥, 𝑑)

Γ,
„

𝑧 : 𝑇, 𝑧1 : 𝑈 ; Δ|free∅ ,
„

𝑧 : 𝑖, 𝑧1 : free ⊢𝑖 𝑡 : 𝑖

Γ;Δ ⊢𝑐 𝜅 (
„

𝑧 : 𝑖 𝑇 , 𝑧1 : 𝑈) {𝑑} 𝑡
(Comm-Con)

Fig. 10. Committed Terms and Literals in 𝜄DOT

The initialization system gives initialization states to variables, terms, and literals. Literals are

always allocated on the committed subheap, so are always given the initialization state committed.

We use similar notation ⊢𝑐 𝑡 and ⊢𝑐 𝑙 to signal that free (i.e. unbound) variables in 𝑡 and 𝑙 are

committed, but the judgments have different uses. ⊢𝑐 𝑡 is used to restrict the field writes and

constructor calls in function bodies, whereas ⊢𝑐 𝑙 is used in literal bindings.

The rules for the initialization system are shown in Figures 10 and 11 and are described below.

3.6.1 Committed Terms and Literals. The judgments of the form Γ;Δ ⊢𝑐 𝑡 in Figure 10 are used

to restrict terms from performing writes to variables that are free or performing new allocations

on existing free subheaps. The (Comm-Var) rule restricts the variables used in the judgment

to be committed. The (Comm-App) rule ensures that arguments passed to functions are always

committed. Similarly, the (Comm-New) rule ensures that constructor applications in this judgment

also use only committed arguments. The rule allocates a new free subheap when the construc-

tor is called which will be merged into the committed subheap when the constructor returns.

The (Comm-Read) rule ensures that field reads are only performed on committed variables. The

(Comm-Asn) rule ensures that only committed variables are written to fields of committed vari-

ables. The (Comm-Lit) rule ensures that we let bind well-typed literals in this judgment. The

(Comm-Let) rule lifts the judgment to the bound term and body of a let binding.

The judgments of the form Γ;Δ ⊢𝑐 𝑙 in Figure 10 ensure that bodies of constructor and function

literals are well-typed according to the initialization system. The (Comm-Fun) rule ensures that the

body 𝑡 of a function accesses only committed variables. This is required because we do not want

to allow writing an uninitialized object to the field of a committed object, breaking the invariant

that committed objects are transitively initialized. The premise of (Comm-Fun) assumes that the

parameter 𝑧 is committed, which is guaranteed by (Comm-App).

The (Comm-Con) rule deserves special attention since it is where all relations of the initialization

system interact together. The notation eff (𝑥, 𝑑) means the set of pairs (𝑥, 𝑎) such that {𝑎 = null} ∈

𝑑 . The premise ⊢𝑒 𝑡 : eff (𝑥, 𝑑) ensures that the constructor body definitely assigns to every field of

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:15

Δ (𝑥) = 𝑖

Γ;Δ ⊢𝑖 𝑥 : 𝑖
(Init-Var)

Γ;Δ ⊢𝑐 𝑡

Γ;Δ ⊢𝑖 𝑡 : committed
(Init-Comm)

Γ;Δ ⊢𝑐 𝑘 Γ;Δ ⊢𝑖
„

𝑥 : 𝑖

Γ ⊢ 𝑘 : 𝐾 (
„

𝑧 : 𝑖 𝑇 , 𝑧1 : 𝑈)

Γ;Δ ⊢𝑖 new 𝑘 (#„𝑥) : free
(Init-New)

Γ;Δ ⊢𝑖 𝑥 : free

Γ;Δ ⊢𝑖 𝑥1 : free

Γ;Δ ⊢𝑖 𝑥 .𝑎 ≔ 𝑥1 : free
(Init-Asn-Free)

Γ;Δ ⊢𝑖 𝑥 : 𝑖

Γ;Δ ⊢𝑖 𝑥1 : committed

Γ;Δ ⊢𝑖 𝑥 .𝑎 ≔ 𝑥1 : committed
(Init-Asn-Comm)

Γ;Δ ⊢𝑖 𝑡 : 𝑖

Γ, 𝑥 : 𝑇 ;Δ, 𝑥 : 𝑖 ⊢𝑖 𝑢 : 𝑖
′

Γ;Δ ⊢𝑖 let 𝑥 : 𝑇 = 𝑡 in 𝑢 : 𝑖 ′
(Init-Let)

Γ;Δ ⊢𝑐 𝑙

Γ, 𝑥 : 𝑇 ;Δ, 𝑥 : committed ⊢𝑖 𝑢 : 𝑖
′

Γ;Δ ⊢𝑖 let 𝑥 : 𝑇 = 𝑙 in 𝑢 : 𝑖 ′
(Init-Lit)

Fig. 11. Initialization for Terms in 𝜄DOT

the object it will construct. Judgments of the form Γ;Δ ⊢𝑖 𝑡 : 𝑖 will be described in more detail below

in Section 3.6.2, but they allow allocations on the topmost free subheap and writes to free terms

such as 𝑧1, the this/self variable. To ensure that these additional write operations remain safe, we

prevent the constructor body from referring to free variables in its enclosing scope by removing

them from the initialization context Δ using the notation Δ|free∅ . In general, we write Δ|free𝑣𝑠 for the

restriction of Δ that contains all committed variables from Δ but only those free variables from Δ

that are also in 𝑣𝑠 . The constructor body is typed with the initialization context Δ|free∅ extended

with initialization types for the constructor parameters and the this/self variable. Since these rules

restrict literals (constructors and lambda functions) to refer only to variables from their enclosing

scope that are committed, these literals can be allocated directly on the committed subheap.

3.6.2 Initialization State of Terms. The rules in Figure 11 qualify termswith an initialization qualifier.

When Γ;Δ ⊢𝑖 𝑡 : 𝑖 holds, if the term 𝑡 evaluates to a location 𝑦, then 𝑦 will have initialization type 𝑖 .

These rules are applied inside a constructor body. In a constructor body, in addition to all operations

allowed by committed terms via the (Init-Comm) rule, we allow additional operations.

• The (Init-New) rule allows creating new free objects. In our subheap formulation, the

constructor allocates the object in the same subheap as the free variables in Δ, ensuring that

the constructed object will become committed at the same time as the free objects in Δ.

• The (Init-Asn-Comm) rule allows assigning committed locations to fields of free objects.

• The (Init-Asn-Free) rule allows assigning free locations to fields of free objects.

Notice that Γ;Δ ⊢𝑐 𝑡 is more restrictive than Γ;Δ ⊢𝑖 𝑡 : committed. For example, we have

Γ;𝑥1 : free, 𝑥2 : committed ⊢𝑖 let 𝑦 = 𝑥1 in 𝑥2 : committed, but Γ;𝑥1 : free, 𝑥2 : committed ⊬𝑐

let 𝑦 = 𝑥1 in 𝑥2 since 𝑥1 is free.

We designed the initialization system to be mostly independent of the type system; only the

(Comm-New) and (Init-New) rules use the type system. This was so that we could understand and

reason about the initialization system mostly free of the bad bounds problem of DOT calculi.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:16 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

4 CONFIGURATION TYPING

We prove the type and initialization safety by proving progress and preservation lemmas in the

style of Wright and Felleisen [1994]. Since the operational semantics of 𝜄DOT is defined in terms of

runtime configurations, we must extend the type and initialization system to runtime configurations.

Configuration typing is a list of properties that are satisfied by an empty configuration of a

well-typed program, and that continue to hold as the program executes. In 𝜅DOT, configuration

typing related a context, a configuration, and a type; it was of the form Γ ⊢ ⟨𝑡 ; 𝐹𝑠; Σ⟩ : 𝑈 . Since a

configuration represents an overall program, with 𝑡 filling in the hole in the evaluation context

represented by 𝐹𝑠 and running with the heap Σ, configuration typing gives the overall configuration

a type𝑈 . This means that if the program terminates, the answer would be of type𝑈 .

Configuration typing for 𝜄DOT is more complex than𝜅DOT since we needmore precise invariants

about the heap. Field writes have an effect on initialization and field reads require fields to contain

non-null locations, i.e they require certain effect obligations to have been fulfilled. Thus we need to

define initialization effect invariants and show that they are preserved, in addition to showing that

typing invariants are preserved. For this, we introduce a notion of effects and effect contexts.

Effect contexts, E, will map locations to sets of field names, and will track all the fields that need

to be initialized before we can consider the object at the location to be null-free.

𝜄DOT’s configuration typing has the form Γ; Δ ; E𝑠 ⊢ ⟨𝑡 ; 𝐹𝑠; Σ⟩ :
(

𝐸𝑠 ,𝑈
)

, where Γ is a typing

context, Δ is an initialization context, E𝑠 is a stack of effect contexts, and 𝐸𝑠 is a stack of effects.

Like in 𝜅DOT, 𝑈 is the type of the eventual answer if the program terminates. The additional

invariants are discussed in more detail in Section 4.5, but we describe the components now. The

initialization context Δ has the same domain as the heap Σ and tracks the initialization state of the

heap items in Σ. The stack of effect contexts E𝑠 serves two purposes. E𝑠 corresponds to the stack

of free subheaps in our subheap formulation of FBC. The domain of each E ∈ E𝑠 is the set of heap

locations in the corresponding subheap. Mappings in each effect context of E𝑠 track which object

fields in the heap Σ are still uninitialized. The stack of effects 𝐸𝑠 conservatively tracks the effects

of 𝑡 and 𝐹𝑠 , and has the same length as E𝑠 . If E𝑠 = E1 :: . . . :: E𝑛 and 𝐸𝑠 = 𝐸1 :: . . . :: 𝐸𝑛 , then for

every 𝑖 ∈ {1, . . . , 𝑛}, {(𝑥, 𝑎) | 𝑎 ∈ E𝑖 (𝑥)} ⊂ 𝐸𝑖 and objects in the subheap corresponding to E𝑖 can

be safely promoted after the effects 𝐸𝑖 have been performed. Note that Δ here gives initialization

states to the entire heap; subsets of Δ will be used to type the focus of execution 𝑡 and terms in

the frame stack 𝐹𝑠 . Promoting a subheap to be part of the committed subheap simply updates

mappings in Δ from free to committed.

For a concrete example of how the above notation corresponds to our subheap formulation of

FBC, consider the heap configuration of the code fragment in Figure 4, captured immediately after

entering the Fruit constructor. This is at a slightly earlier point of execution than Figure 5a, where

the Tree constructor was called allocating a new subheap, which in turn called the Fruit constructor

allocating an object on the same subheap, but no field assignments have been made, so both t.fruit

and f.tree are null. In this heap configuration, the objects in Σ that belong to the top-most free

subheap are f and t, where the following bindings are present in Σ: f = 𝜈 (𝑧 : Fruit) {tree = null}

t = 𝜈 (𝑧 : Tree) {fruit = null}. At the point of capture, the topmost E in E𝑠 would contain f : {tree} , t :

{fruit} and the topmost 𝐸 of the 𝐸𝑠 would contain {(f, tree), (t, fruit)}, with Δ(f) = Δ(t) = free.

When we get to the same point of execution as Figure 5a, since the field assignments have been

performed, 𝐸 would be empty and E would be f : ∅, t : ∅ since no fields of 𝑓 and 𝑡 remain

uninitialized. Promoting the free subheap corresponding to E to be committedwould then involve

updating f and t to be committed in Δ as well as popping the empty E and 𝐸 from E𝑠 and 𝐸𝑠 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:17

4.1 Heap Correspondence

Heap correspondence extends the type system to items in the heap. It checks that the typing context

Γ contains a precise type for each item in the heap, i.e. without applying any subtyping rules at the

top level. Heap correspondence in 𝜄DOT is similar to heap correspondence in 𝜅DOT [Kabir and

Lhoták 2018] and store correspondence in WadlerFest DOT [Amin et al. 2016; Rapoport et al. 2017].

Definition 4.1 (Heap Correspondence). For a context Γ and a heap Σ, we say that Γ corresponds to

Σ, written Γ ∼ Σ, if Γ and Σ have the same domain, and for all 𝑥 : 𝑇 ∈ Γ and 𝑥 = ℎ ∈ Σ,

• if ℎ = 𝜆 (𝑧 : 𝑆) .𝑡 , then Γ ⊢ ℎ : 𝑇 using the (All-I) rule, or

• if ℎ = 𝜅 (
„

𝑧 : 𝑆, 𝑧1 : 𝑈) {𝑑} 𝑡 , then Γ ⊢ ℎ : 𝑇 using the (K-I) rule, or

• if ℎ = 𝜈 (𝑧 : 𝑈) ℎ𝑑 for some object 𝜈 (𝑧 : 𝑈) ℎ𝑑 , then 𝑇 = 𝜇 (𝑧 : 𝑈) and Γ ⊢ ℎ𝑑 : [𝑥/𝑧]𝑈 .

4.2 Well-Committed and Free Heaps

When encoding the FBC system, we need to split up the heap into the committed heap and a stack

of free subheaps. The following definitions serve this purpose.

4.2.1 Committed Objects and Heaps. Similar to the heap correspondence, we define a correspon-

dence between the committed part of the heap and the initialization context. This formalizes the

invariant that items in the committed subheap may never refer to objects in free subheaps.

Definition 4.2 (Committed Heap Object). A heap object 𝜈 (𝑧 : 𝑇) ℎ𝑑 is well-committed under Δ, if

it contains no null fields and every field points to a location that is committed according to Δ.

Definition 4.3 (Committed Heap Items). A heap item is well-committed under Γ,Δ, if it is either a

well-committed heap object under Δ or a literal 𝑙 such that Γ,Δ ⊢𝑐 𝑙 .

Definition 4.4 (Well-committed Heap). A heap Σ is well-committed under Γ,Δ, if Γ,Δ, Σ all have

the same domain and whenever Δ (𝑥) = committed, Σ(𝑥) is a well-committed heap item under Γ,Δ.

4.2.2 Free Objects and Heaps. We now define a correspondence between the free parts of the

heap and a stack of effect contexts.

Definition 4.5 (Free Heap Object). An object 𝑦1 = 𝜈 (𝑧 : 𝑇) ℎ𝑑 ∈ Σ is a free heap object under Δ, E

if Δ (𝑦1) = free, E (𝑦1) = {𝑎 | {𝑎 = null} ∈ ℎ𝑑}, and for all {𝑎 = 𝑦2} ∈ ℎ𝑑 , either Δ (𝑦2) = free and

𝑦2 ∈ dom (E), or Δ (𝑦2) = committed.

The above simply states that the non-null fields of the object represented by 𝑦1 point only to

objects in the free subheap represented by E or to items in the committed subheap. It also states

that E has enough field names to ensure that the fields of 𝑦1 will eventually be assigned.

Definition 4.6 (Free Subheap). An effect context E corresponds to a free subheap of Σ under Δ, if

for every 𝑦 ∈ dom (E) there is a 𝑦 = 𝜈 (𝑧 : 𝑇) ℎ𝑑 ∈ Σ that is a free heap object under Δ, E.

Definition 4.7 (Free Heap Stack). A stack of effect contexts E𝑠 is a free heap stack of Σ under

Γ,Δ, if the E𝑠 have disjoint domains, each E corresponds to a free subheap of Σ under Δ, and Σ is

well-committed under Γ,Δ.

4.3 Stack Typing

The stack typing rules for 𝜄DOT are shown in Figure 12. Stacks represent evaluation contexts, and

stack typing judgments are of the form Γ, Δ , E𝑠 ⊢ 𝐹𝑠 :
(

𝑇, 𝑖
)

⇒
(

𝐸𝑠 ,𝑈
)

. The frame stack 𝐹𝑠

is treated as a function whose parameter is a focus of execution to be provided and which must

have type𝑇 and initialization type 𝑖 . When provided such a focus of execution, the whole stack will

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:18 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

Γ ⊢ 𝑆 <: 𝑈

Γ;Δ; 𝜀 :: 𝜀 ⊢ 𝜀 : (𝑆, 𝑖) ⇒ (∅ :: 𝜀,𝑈)
(Stack Empty)

𝑥 ∉ fv (𝑇) Γ, 𝑥 : 𝑆 ⊢ 𝑡 : 𝑇

⊢𝑒 𝑡 : 𝐸1 Γ; (Δ, 𝑥 : 𝑖1) |
free

dom(E)∪{𝑥 } ⊢𝑖 𝑡 : 𝑖2
Γ,Δ, E :: E𝑠 ⊢ 𝐹𝑠 : (𝑇, 𝑖2) ⇒ (𝐸2 :: 𝐸𝑠,𝑈)

Γ;Δ; E :: E𝑠 ⊢ let 𝑥 = □ in 𝑡 :: 𝐹𝑠 : (𝑆, 𝑖1) ⇒ (𝐸1 ∪ 𝐸2 :: 𝐸𝑠,𝑈)
(Stack Let)

Γ ⊢ 𝑥 : 𝑇 𝑥 ∈ dom (E)

Γ,Δ, E :: E𝑠 ⊢ 𝐹𝑠 : (𝑇, free) ⇒ (𝐸2 :: 𝐸𝑠,𝑈)

Γ,Δ, E :: E𝑠 ⊢ return 𝑥 :: 𝐹𝑠 : (𝑆, 𝑖) ⇒ (𝐸2 :: 𝐸𝑠,𝑈)
(Stack Return-Free)

Γ ⊢ 𝑥 : 𝑇 𝑥 ∈ dom (E)

Γ,Δ, E𝑠 ⊢ 𝐹𝑠 : (𝑇, committed) ⇒ (𝐸𝑠,𝑈)

Γ,Δ, E :: E𝑠 ⊢ return 𝑥 :: 𝐹𝑠 : (𝑆, 𝑖) ⇒ (∅ :: 𝐸𝑠,𝑈)
(Stack Return-Comm)

Fig. 12. Stack Typing in 𝜄DOT

have type𝑈 and will perform the effects and subheap promotions in 𝐸𝑠 in addition to any effects

of the focus of execution. The domain of the top element of E𝑠 represents the free variables that

the focus of execution may perform field writes on.

The (Stack Empty) rule types the base case of an empty stack. The subtyping premise in this

rule allows us to avoid defining subtyping between stacks and between configurations.

The (Stack Let) rule mirrors the (Init-Let) and (Let-Eff) rules and the typing rule for let

bindings. It is the only rule that contributes effects to the effect stack: in a judgment Γ,Δ, E𝑠 ⊢

𝐹𝑠 : (𝑇, 𝑖) ⇒ (𝐸 :: 𝐸𝑠,𝑈), the 𝐸 contains the effects from let frames until the next commitment point

(commitment points are introduced by (Stack Return-Comm), which is explained subsequently).

From ⊢𝑒 𝑡 : 𝐸1, we know that (𝑦, 𝑎) ∈ 𝐸1 only if 𝑡 contains a sub-term of the form 𝑦.𝑎 ≔ 𝑥 .

The (Δ, 𝑥 : 𝑖1) |
free

dom(E)∪{𝑥 } premise in (Stack Let) deserves some explanation. In let 𝑥 = □ in 𝑡 ,

𝑥 refers to an unevaluated computation, and 𝑡 will be evaluated once 𝑥 is fully evaluated. The

initialization system will ensure that if 𝑖1 = free, 𝑥 will evaluate to a location in the subheap

represented by E and if 𝑖1 = committed, 𝑥 will evaluate to a location in the committed subheap.

The term 𝑡 in let 𝑥 = □ in 𝑡 must not mutate objects in other free subheaps, but it should be allowed

to mutate 𝑥 . Therefore, we check 𝑡 in the restricted initialization context (Δ, 𝑥 : 𝑖1) |
free

dom(E)∪{𝑥 }

which contains 𝑥 and the topmost free subheap, but removes all other free subheaps from Δ.

The (Stack Return-Comm) and (Stack Return-Free) rules ensure that, after a constructor call,

the stack is typed with the type of the allocated object. The premise 𝑥 ∈ dom (E) ensures that

the returned reference will be in the subheap E. The (Stack Return-Comm) rule represents a

commitment point where a subheap represented by E will be promoted when this frame is popped.

4.4 Effect Correspondence

Effect contexts track the fields that need to be initialized to consider a free subheap fully initialized,

and effect sets track which fields will be initialized when subterms of the configuration term and

the stack are executed. We define effect correspondence to relate the two.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:19

Definition 4.8 (Effect Correspondence). Let E𝑠 = E1 :: ... :: E𝑛 :: 𝜀 be an effect context stack and

𝐸𝑠 = 𝐸1 :: ... :: 𝐸𝑛 :: 𝜀 be an effect set stack. We say that E𝑠 corresponds to 𝐸𝑠 , denoted E𝑠 ∼ 𝐸𝑠 , if

for all 𝑖 ∈ {1, . . . , 𝑛}, {(𝑥, 𝑎) | 𝑎 ∈ E𝑖 (𝑥)} ⊂ 𝐸𝑖 .

E (𝑥) is the set of effects required to definitely assign the fields of the object at 𝑥 . Therefore, the

range of E contains the effects needed to definitely assign all the fields of all the objects in E. If

E :: E𝑠 ∼ 𝐸 :: 𝐸𝑠 , then 𝐸 contains all the effects in E (and possibly more), so performing all the

effects in 𝐸 ensures that all fields in the topmost free subheap E are assigned.

4.5 Typing a Configuration

We finally bring all the preceding definitions together in the concept of configuration typing, which

tracks all the runtime invariants necessary for proving type safety.

Definition 4.9 (Configuration Typing). We write Γ;Δ; E :: E𝑠 ⊢ ⟨𝑡 ; 𝐹𝑠; Σ⟩ : (𝐸 :: 𝐸𝑠,𝑈), if

(1) Γ,Δ, E :: E𝑠 ⊢ 𝐹𝑠 : (𝑇, 𝑖) ⇒ (𝐸2 :: 𝐸𝑠,𝑈), which means that 𝐹𝑠 , the continuation for the

current focus of execution 𝑡 , when provided with a term of type 𝑇 and initialization type 𝑖 ,

will perform effects 𝐸2 (in addition to those performed by 𝑡) and yield an answer of type𝑈 .

(2) Γ is an inert context according to the criteria of Rapoport et al. [2017],

(3) Γ ∼ Σ, which means that the heap Σ corresponds to Γ,

(4) Γ ⊢ 𝑡 : 𝑇 ,

(5) E :: E𝑠 is a free heap stack of Σ under Γ,Δ, which describe the free subheaps and the

uninitialized fields of Σ,

(6) Γ, Δ|free
dom(E) ⊢𝑖 𝑡 : 𝑖 , which means that 𝑡 has initialization type 𝑖 while only using committed

variables or free variables present in dom (E),

(7) 𝐸 = 𝐸1 ∪ 𝐸2,

(8) ⊢𝑒 𝑡 : 𝐸1, which means that 𝑡 will definitely perform effects 𝐸1, and

(9) E :: E𝑠 ∼ 𝐸 :: 𝐸𝑠 , which means 𝐸 contains all effects in E and 𝐸𝑠 contains all effects in E𝑠 .

Item 1 is related to all of the type, effect, and initialization systems. Items 2 to 4 are related to the

type system. Item 5 is an invariant about the heap. Items 6 to 9 are invariants about effects. Items 5

and 9 together say that the program will definitely initialize all fields in Σ. Inert types and contexts

(item 2) are technical criteria for DOT type preservation and progress proofs. Since our focus is on

initialization safety, we refer the reader to Rapoport et al. [2017] for discussion of inertness.

5 TYPE AND INITIALIZATION SAFETY

In 𝜄DOT we state the safety of the type system and the initialization system as follows.

Theorem 5.1 (Type and Initialization Safety). If ⊢ 𝑡 : 𝑇 and ⊢𝑖 𝑡 : committed, then either the

initial configuration ⟨𝑡 ; 𝜀; ·⟩ diverges or ⟨𝑡 ; 𝜀; ·⟩ ↦−→∗ ⟨𝑦; 𝜀; Σ⟩ for some answer ⟨𝑦; 𝜀; Σ⟩.

We prove the theorem by extending the progress and preservation lemmas of Kabir and Lhoták

[2018] for 𝜅DOT, which in turn are an extension of the type safety proof of Rapoport et al. [2017]

for WadlerFest DOT. Our safety proof requires additional steps since we have an initialization

system in addition to the type system. Firstly, in our progress lemma, we need to take initialization

information into account. This is mainly needed to show the safety of field reads: a field read 𝑥 .𝑎

will not get stuck if 𝑥 is fully initialized. Secondly, our preservation lemma is more complicated

since we have to show that both type and initialization invariants are preserved by reduction steps.

Lemma 5.2 (Progress). If Γ;Δ; E𝑠 ⊢ 𝑐 : (𝐸𝑠,𝑈), then either 𝑐 is an answer or 𝑐 ↦−→ 𝑐 ′ for some 𝑐 ′.

Lemma 5.3 (Preservation). If Γ;Δ; E𝑠 ⊢ 𝑐 : (𝐸𝑠,𝑈) and 𝑐 ↦−→ 𝑐 ′, then there exist Γ′,Δ′, E𝑠 ′, 𝐸𝑠 ′

such that Γ++Γ′;Δ′
; E𝑠 ′ ⊢ 𝑐 ′ : (𝐸𝑠 ′,𝑈).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:20 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

Lemma 5.4 (Initial Configuration Well-Typed). If ⊢ 𝑡 : 𝑇 and ⊢𝑖 𝑡 : committed, then 𝜀, 𝜀, 𝜀 ::

𝜀 ⊢ ⟨𝑡 ; 𝜀; ·⟩ : (∅ :: 𝜀,𝑇).

5.1 Preserving Heap and Effect Invariants

The 𝜄DOT safety proof requires several lemmas about preserving heap invariants after the heap is

modified. In particular, the configuration typing requires that the stack of effect contexts correspond

to a free heap stack. Their proofs all proceed by an induction on the stack of effect contexts.

Lemma 5.5 (Allocating Literals). If E :: E𝑠 is a free heap stack of Σ under Γ and Δ and

Γ;Δ ⊢𝑐 𝑙 , then for any fresh 𝑦 and any 𝑇 , E :: E𝑠 is a free heap stack of Σ, 𝑦 = 𝑙 under Γ, 𝑦 : 𝑇 and

Δ, 𝑦 : committed.

Lemma 5.6 (Assigning to Committed Objects). If E :: E𝑠 is a free heap stack of Σ under Γ,Δ

and Δ (𝑦1) = committed, Δ (𝑦2) = committed, 𝑦1 = 𝜈 (𝑧 : 𝑇) ... {𝑎 = 𝑦3} ... ∈ Σ, then E :: E𝑠 is a

free heap stack of Σ [𝑦1 = 𝜈 (𝑧 : 𝑇) ... {𝑎 = 𝑦2} ...] under Γ,Δ.

Lemma 5.7 (Assigning to Free Objects). Suppose the following hold.

• E :: E𝑠 is a free heap stack of Σ under Γ,Δ,

• 𝑦1 = 𝜈 (𝑧 : 𝑇) ... {𝑎 = null} ... ∈ Σ or 𝑦1 = 𝜈 (𝑧 : 𝑇) ... {𝑎 = 𝑦3} ... ∈ Σ for some 𝑦3, and

• 𝑦2 ∈ dom (E) or Δ (𝑦2) = committed.

Then E [𝑦1 = (E (𝑦1) \ {𝑎})] :: E𝑠 is a free heap stack of Σ [𝑦1 = 𝜈 (𝑧 : 𝑇) ... {𝑎 = 𝑦2} ...] under Γ,Δ.
7

Lemma 5.8 (Allocating Free Objects). Suppose

• E :: E𝑠 is a free heap stack of Σ under Γ,Δ,

• all fields in ℎ𝑑 are null, and

• 𝐸 = {(𝑦, 𝑎) | {𝑎 = null} ∈ ℎ𝑑}.

Then E, 𝑦 = 𝐸 :: E𝑠 is a free heap stack of Σ, 𝑦 = (𝜈 (𝑧 : 𝑇) ℎ𝑑) under Γ, 𝑦 : 𝑇 and Δ, 𝑦 : free.

Lemma 5.9 (Allocating a New Free Subheap). Suppose

• E𝑠 is a free heap stack of Σ under Γ,Δ,

• all fields in ℎ𝑑 are null, and

• 𝐸 = {(𝑦, 𝑎) | {𝑎 = null} ∈ ℎ𝑑}.

Then 𝑦 = 𝐸 :: E𝑠 is a free heap stack of Σ, 𝑦 = (𝜈 (𝑧 : 𝑇) ℎ𝑑) under Γ, 𝑦 : 𝑇 and Δ, 𝑦 : free.

Lemmas 5.8 and 5.9 show that when allocating a new object, 𝑦, we have a choice to allocate it

in an existing topmost free subheap or in a new free subheap. Objects are allocated by calling

a constructor and if the constructor call was typed with (Init-New), we allocate on the topmost

subheap, and if the constructor call was typed with (Comm-New), we allocate on a new subheap.

Lemma 5.10 (Promoting a Free Subheap). Suppose

• E :: E𝑠 is a free heap stack of Σ under Γ,Δ,

• for all 𝑦 ∈ dom (E), E (𝑦) = ∅, and

• dom (𝐸) = { #„𝑦 }.

Then E𝑠 is a free heap stack of Σ under Γ,Δ
„

[𝑦 = committed].

Lemma 5.10 is where much of our infrastructure about effects finally pays off! Subheaps start out

by being allocated via Lemma 5.9 and afterwards additional allocations on the same subheap may

follow via Lemma 5.8. We then remove all the field names in the effect context E via Lemma 5.7,

which ensures that after assignments, objects in the free subheap point only inside the same

7In our Coq formulation of this lemma, we require an additional premise that Γ ∼ Σ. This is used to ensure that objects in

the heap are well-formed. Otherwise, an object can have two uninitialized fields with the same name
{

𝑎 = null
}

, and if we

only update the first field, would not be able to remove 𝑎 from E (𝑦1) .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:21

free subheap or to the committed heap. Once all the field names in the effect context E have

been removed, i.e. E (𝑦) = ∅ for all 𝑦 ∈ dom (E), every object in this free subheap must be fully

initialized. Thus we can promote this heap to be fully committed.

5.2 Substitution Lemma for Initialization

Small-step type safety proofs make use of a substitution lemma. The substitution lemma is used

to show that when parameters are replaced by values in a function, constructor, or let binding

body, the type of the body is preserved. Since 𝜄DOT has a type system, an effect system, and an

initialization system, we need substitution lemmas for all of them. Below we state the substitution

lemmas for all of the systems so that we may compare and contrast them.

Lemma 5.11 (Substitution Lemma for Effects). If ⊢𝑒 𝑡 : 𝐸, then ⊢𝑒 [𝑦/𝑥] 𝑡 : [𝑦/𝑥] 𝐸.

Lemma 5.12 (Substitution Lemma for Typing). If Γ1, 𝑥 : 𝑇, Γ2 ⊢ 𝑡 : 𝑈 and Γ1, [𝑦/𝑥] Γ2 ⊢

𝑦 : [𝑦/𝑥]𝑇 , then Γ1, [𝑦/𝑥] Γ2 ⊢ [𝑦/𝑥] 𝑡 : [𝑦/𝑥]𝑈 .

Lemma 5.13 (Substitution Lemma for Initialization). Suppose the following conditions hold.

• Γ1, 𝑥 : 𝑇, Γ2; Δ1, 𝑥 : 𝑖1,Δ2 ⊢𝑖 𝑡 : 𝑖2,

• Γ1, [𝑦/𝑥] Γ2 ⊢ 𝑦 : [𝑦/𝑥]𝑇 , and

• (Δ1,Δ2) (𝑦) = 𝑖1.

Then Γ1, [𝑦/𝑥] Γ2; Δ1,Δ2 ⊢𝑖 [𝑦/𝑥] 𝑡 : 𝑖2.

The substitution lemma for the initialization system in 𝜄DOT takes an interesting form. Since our

initialization system depends on the type system, our proof of Lemma 5.13 (Substitution Lemma

for Initialization) uses Lemma 5.12 (Substitution Lemma for Typing), and the second condition in

Lemma 5.13 is used for this reason.

5.3 Preservation

We prove Lemma 5.3 (Preservation) by an induction on the typing of the focus of execution, with the

variable case breaking down into further cases based on the frame stack. Except for the subtyping

case which is easily discharged by the induction hypothesis, the cases align with the rules of Figure 7

(Operational Semantics for 𝜄DOT). Below we discuss the cases, focusing on the initialization safety.

The (Project), (Return), (Assignment), and (Let-Push) cases are simpler since they do not

make use of the effect or initialization substitution lemmas.

We split the (Return) case into two subcases depending on whether the returned location is

free or committed. We discuss the committed case since it makes use of effect correspondence.

Inverting stack typing tells us that the stack has the empty effect (i.e. 𝐸1 = ∅ in configuration

typing). By inverting the effect of the focus of execution (a location in this case) we know that

the focus of execution also has the empty effect (i.e. 𝐸2 = ∅ in configuration typing). By effect

correspondence, 𝐸1 ∪ 𝐸2 = ∅ over-approximates the effects required by the current free subheap,

so we get that for all 𝑦 ∈ dom (E), E (𝑦) = ∅. This allows us to use Lemma 5.10 (Promoting a Free

Subheap) to promote the free subheap and return the location in the return frame as committed.

The (Assignment) case makes use of the assignment heap invariant lemmas (Lemmas 5.6 and 5.7).

For the (Project) case, since we are in a well-typed configuration, the focus of execution𝑦.𝑎must

be well-initialized. Inverting this initialization yields that 𝑦.𝑎 is committed and 𝑦 is committed.

Since the heap must be well-committed, the object that 𝑦 points to must be committed, so its 𝑎 field

must contain a committed location. Hence, we reduce to a location that is committed, as required.

Since both 𝑦.𝑎 and 𝑦 may only have the empty effect, the effect conditions are preserved.

The (Let-Push) case involves only minor inversions of effect and initialization typing.

The rest of the cases involve substitution and make use of substitution lemmas from Section 5.2.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:22 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

The (Application) case needs to ensure that substituting a committed argument into the body

of the function produces a committed term.

The (Let-Loc), and (Let-Lit) cases need to ensure that substituting a concrete variable of the

appropriate initialization type produces a term of the initialization expected by the stack.

The (New) rule splits into two cases by inverting initialization typing. In the first case (from

(Comm-New) and (Init-New)), an object is allocated into a new subheap; in the second case, we

are creating an object in the same subheap. We use the effect substitution lemma to show that the

constructor body has the effect of initializing the object and that effect correspondence is preserved,

and the initialization substitution lemma to show that the invoked constructor body is well-typed.

6 EXTENSIONS OF 𝜄DOT

6.1 Free Literals Extension

In the above sections of this paper, we described a simple object initialization system. But the

system presented can be limiting when encoding Scala constructs in it. In this section we discuss

an extension of the 𝜄DOT calculus that gets around some of these limitations.

Literal bindings in the base 𝜄DOT calculus must be typed using the (Init-Lit) rule, whose premise

Γ;Δ ⊢𝑐 𝑙 prevents function and constructor literals from using variables with initialization type

free from their enclosing scope. This means that inside a constructor body, we cannot define

function literals that refer to the this variable of the constructor and then assign that literal to a field

of the this variable. Methods in Scala generally need to access the this variable to read or mutate

fields of the object on which the method was called. Hence function literals cannot be assigned as

analogues of methods while the object is being initialized Ð method-like fields must be filled with

dummy function literals and backpatched after the object is committed à la Landin’s knot. This is

unlike Scala where methods become available immediately after a constructor returns.

To remedy this, we introduce free literals, which are allocated on a free subheap and may use

variables from the same subheap. We add the following rule to the initialization system.

Γ;Δ
„

[dom (Δ) = committed] ⊢𝑐 𝑙

Γ, 𝑥 : 𝑇 ;Δ, 𝑥 : free ⊢𝑖 𝑢 : 𝑖
′

Γ;Δ ⊢𝑖 let 𝑥 : 𝑇 = 𝑙 in 𝑢 : 𝑖 ′
(Init-Lit-Free)

In this rule, the literal 𝑙 is typed assuming that all variables in Δ are committed, but in the let

binding body 𝑢, we treat the binding variable 𝑥 as free. In the body 𝑢, the free initialization of 𝑥

prevents applying 𝑥 to any arguments, but it does allow assigning 𝑥 to fields of free objects.

In a constructor body, we can use the new rule to define function literals which use the this

variable of the constructor and assign it to a field of the object being constructed. The function

literal cannot be called with arguments until its assumption that the object referred to by the this

variable is committed becomes true. When the object is fully initialized and becomes committed,

since the literal belonged to the same subheap, the literal also becomes committed. At this point,

we can read a reference to the function literal from the object and call the function with arguments.

Bindings of the form 𝑥 : free in Δ represent heap items in the topmost free subheap. The body

of the literal 𝑙 can use these variables, since 𝑙 is typed assuming these variables are committed.

In our subheap formulation, when let 𝑥 : 𝑇 = 𝑙 in 𝑢 is executed, the literal 𝑙 is allocated on the

topmost free subheap, which is why we give the binding variable an initialization state of free

when typing 𝑢. The initialization system prevents literals in a free subheap from being called with

arguments, but allows assigning references to the literals to be assigned to fields of objects in the

same free subheap via the (Init-Asn-Free) rule in Figure 11.

To prove type safety, since we can now allocate literals on free subheaps, we need a definition for

free heap literals similar to Definition 4.5 (Free Heap Object). We also need to update Definition 4.6

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:23

(Free Subheap) to allow for free heap literals. Furthermore, similar to Lemma 5.8 (Allocating Free

Objects), we need a lemma for allocating free literals on free subheaps. These definitions are

detailed below.

Definition 6.1 (Free Heap Literal). We say that 𝑦1 = 𝑙 ∈ Σ is a free heap literal under Γ,Δ, E if

• Δ (𝑦1) = free,

• E (𝑦1) = ∅, and

• Γ;Δ
„

[dom (E) = committed] ⊢𝑐 𝑙 .

Definition 6.2 (Free Heap). We say that an effect context E corresponds to a free subheap of Σ

under Γ,Δ if, for every 𝑦 = 𝐸 ∈ E, there is either a 𝑦 = 𝜈 (𝑧 : 𝑇) ℎ𝑑 ∈ Σ that is a free heap object

under Δ, E, or there is a 𝑦 = 𝑙 ∈ Σ that is a free heap literal under Γ,Δ, E.

Lemma 6.3 (Allocating Free Literals). Suppose

• E :: E𝑠 is a free heap stack of Σ under Γ,Δ,

• Γ;Δ
„

[dom (E) = 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑] ⊢𝑐 𝑙 .

Then E, 𝑦 = ∅ :: E𝑠 is a free heap stack of Σ, 𝑦 = 𝑙 under Γ, 𝑦 : 𝑇,Δ, 𝑦 : free.

Lastly, we need to update the proof of Lemma 5.10 (Promoting a Free Subheap) to handle

free literals and solve extra cases in the initialization substitution and preservation lemmas. The

statement of Lemma 5.10 and rest of the soundness proof is unchanged. We have mechanized the

type safety proof of this extension by modifying safety proof of the base calculus with the above

changes.

6.2 Local Initialization Extension

Another technical limitation is that we may only safely read from an object after it has been

promoted to committed, which ensures that all objects it points to are transitively initialized.

However, often, when initializing objects, it is useful and natural to read a field of another object

in the same free subheap, and the transitively initialized property is not required (i.e. if we just

require 𝑥 .𝑎 itself and never read any of its fields such as 𝑥 .𝑎.𝑏, then we really only need 𝑥 .𝑎 ≠ null).

We may weaken the requirements for reading from an object by introducing a new initialization

type local that captures the notion of having non-null fields, but not transitively like committed.

We observe that the definite assignment requirements of 𝜄DOT guarantee that all fields of an

object returned by a constructor will always be non-null. We modify the (Init-New) rule to the

following so that this guarantee is reflected in the initialization system.

Γ;Δ ⊢𝑐 𝑘 Γ;Δ ⊢𝑖
„

𝑥 : 𝑖

Γ ⊢ 𝑘 : 𝐾 (
„

𝑧 : 𝑖 𝑇 , 𝑧1 : 𝑈)

Γ;Δ ⊢𝑖 new 𝑘 (#„𝑥) : local

An object of initialization type local resides in a free subheap and its fields have been initialized,

but the fields may point to items in the same free subheap (or to items in the committed subheap).

Since local objects are just free objects with additional guarantees which allow for additional

operations listed below, local is a subtype of free.

To allow field reads on objects which are initialized, but not transitively, we add the initializa-

tion type unclassified, a supertype of committed and free, and add the following rule to the

initialization system.

Γ;Δ ⊢𝑖 𝑥 : local

Γ;Δ ⊢𝑖 𝑥 .𝑎 : unclassified
(Local-Read)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:24 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

local

free committed

unclassified

Fig. 13. Subtyping Semi-lattice for Locally Initialized Extension

A constructor can assign references to either kind of subheap to its object. Thus, when reading a

field, we cannot know if the field refers to an object in the committed subheap or an object in the

free subheap. Thus a field read on a local object must be treated as unclassified.

Figure 13 shows a Hasse diagram of the subtyping semi-lattice. A consequence of having ini-

tialization types which are in a subtyping relationship is that we must now add the following

subtyping rule to our initialization typing system.

Δ (𝑥) = 𝑖 𝑖 <: 𝑗

Γ;Δ ⊢𝑖 𝑥 : 𝑗
(Init-Var-Sub)

With the additional rules in place, we can add the line val fruitTree = fruit.tree right after line 27 in

Figure 1 and have the program accepted by the initialization system. Previously, fruit would have

been free, and the field read fruit.tree would have been invalid. But under the new typing rules,

fruit is local and the field read is now allowed.

We have mechanized the type safety proof of the Locally Initialized Extension of 𝜄DOT. The

additional infrastructure required for the proof is discussed in our technical report [Kabir et al.

2020].

7 DISCUSSION

7.1 𝜄DOT without the Initialization System is Unsound

Amin and Tate [2016] showed that null values make Scala unsound. Figure 14 shows one of their

examples adapted to 𝜄DOT.8 The example would type-check under 𝜄DOT’s type system, but not its

initialization system. In the example, we use 𝑡𝑦.𝐿𝑜𝑤 as an alias for an object type and 𝑡𝑦.𝑈𝑝 as an

alias for a function type. We define a function 𝑐𝑜𝑒𝑟𝑐𝑒 , which returns its second argument of type

𝑡𝑦.𝐿𝑜𝑤 , but ascribed the type 𝑡𝑦.𝑈𝑝 using the subtyping relation 𝑡𝑦.𝐿𝑜𝑤 <: 𝑙𝑏.𝑀 <: 𝑡𝑦.𝑀 <: 𝑡𝑦.𝑈𝑝 ,

which is derived from the (Sel-<:) and (<:-Sel) rules of DOT. The rest of the code attempts to

create the reference bounded, so that it can be passed to coerce to upcast obj to ty.Up.

The kUnsafeObj constructor creates an object with an uninitialized field of type {𝑀 : 𝑡𝑦.𝐿𝑜𝑤..𝑡𝑦.𝑈𝑝}.

This field is then read and let bound to bounded and passed to coerce. In DOT and 𝜅DOT, fields store

terms instead of just references. In a DOT or 𝜅DOT version of the program, instead of leaving the

field uninitialized, we would assign it a divergent term.

DOT and𝜅DOT, Scala, and 𝜄DOT all take different approaches to running their respective versions

of the program. In DOT and 𝜅DOT, obj.a would execute but diverge since obj.a would contain a

divergent term. In Scala and 𝜄DOT, obj.a would contain a null reference. Scala would read this null

reference and go on to execute coerce(bounded,obj), but then throw a ClassCastException. In 𝜄DOT,

since there are no reduction rules for reading null references from fields, the abstract machine

would get stuck trying to execute obj.a.

8We inline the function upcast of Amin and Tate to simplify the example.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:25

let 𝑡𝑦 : {𝐿𝑜𝑤 : {𝑎 : ⊤}} ∧ {𝑈𝑝 : ∀(𝑥 : ⊤)⊤} = . . . in

let 𝑐𝑜𝑒𝑟𝑐𝑒 : ∀(𝑙𝑏 : {𝑀 : 𝑡𝑦.𝐿𝑜𝑤..𝑡𝑦.𝑈𝑝})∀(𝑥 : 𝑡𝑦.𝐿𝑜𝑤)𝑡𝑦.𝑈𝑝 =

𝜆 (𝑙𝑏 : {𝑀 : 𝑡𝑦.𝐿𝑜𝑤..𝑡𝑦.𝑈𝑝}) .𝜆 (𝑥 : {𝑎 : ⊤}) .𝑥 in

let 𝑘𝑈𝑛𝑠𝑎𝑓 𝑒𝑂𝑏 𝑗 = 𝜅 (𝑧 : {𝑎 : {𝑀 : 𝑡𝑦.𝐿𝑜𝑤..𝑡𝑦.𝑈𝑝}}) 𝑧 in

let 𝑜𝑏 𝑗 = new 𝑘𝑈𝑛𝑠𝑎𝑓 𝑒𝑂𝑏 𝑗 () in

let 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 = 𝑜𝑏 𝑗 .𝑎 in

let 𝑓 𝑢𝑛 : 𝑡𝑦.𝑈𝑝 = 𝑐𝑜𝑒𝑟𝑐𝑒 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑜𝑏 𝑗 in

𝑓 𝑢𝑛 𝑜𝑏 𝑗

Fig. 14. Example in 𝜅DOT

𝜄DOT’s initialization system would reject the code in Figure 14. The constructor 𝑘𝑈𝑛𝑠𝑎𝑓 𝑒𝑂𝑏 𝑗

fails the definite assignment check of the (Comm-Con) rule, so the program would be rejected.

7.2 The Type of null

Scala defines the Null type to be a subtype of all reference types [Odersky et al. 2006], and defines

null to be the only instance of this type. Based on Amin and Tate [2016], it is not clear that this idea

of null having any reference type is safe. Reading Rapoport et al. [2017] would suggest that null

should not have any reference type, but should only have inert types. In this paper, we demonstrated

that if null is considered only as a temporary placeholder for a non-null reference, it is safe to give

null any type.

7.3 First Class Constructors

Scala does not have first class constructors. Scala offers second class constructors through its class

system, but to the best of our knowledge there are no existing DOT calculi with a class system. We

used 𝜅DOT-style first class constructors because we did not want to take on the burden of adding a

class system to the calculus. However there are other languages with first class constructors, e.g.

JavaScript.

The lack of a class system and using first class constructors add certain design complexities to

the language - constructors are now typed by the DOT type system and are passed by reference.

We use the type system to keep track of the number and initialization types of constructor

arguments rather than have the initialization system keep track of arguments. This introduces

a dependence between the type and initialization systems, and prevents us from combining the

type and initialization contexts into a single context like the one in the original FBC system. We

have to remove initialization assumptions from our initialization context when typing constructors,

but if we also remove the corresponding typing assumptions, we may not be able to convince the

type system that certain references have constructor types since we may have removed too many

subtyping assumptions. An alternative would have been to have the initialization type separately

keep track of construction arguments and their initialization types, but this would complicate the

initialization system by adding additional initialization types.

8 RELATED WORK

Relation to Freedom Before Commitment. Our work ports the FBC [Summers and Mueller 2011b]

initialization system to a new calculus in the WadlerFest DOT [Amin et al. 2016] family called

𝜄DOT. In their technical report, Summers and Mueller [2011a] formally prove the soundness of

FBC for a Java/C#-like language, which we will call FBC-lang in this section. The formalism for

𝜄DOT differs from FBC in the language, the abstract machine, and the safety proof.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

208:26 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

The 𝜄DOT language is based onDOT, which is structurally typed, whereas FBC-lang is a nominally

typed class-based language. Unlike FBC-lang, 𝜄DOT does not support nullable types and does not

support initialization generics. This was a deliberate design decision on our part, since we wanted to

build a core calculus with only the features necessary for studying object initialization in the DOT

calculus. However, the 𝜄DOT type system also is in many ways more expressive since it supports

path-dependent types with ⊤ and ⊥ types. This allows it to model features such as generics and

family polymorphism, which FBC-lang lacks.

𝜄DOT uses a different style of abstract machine than FBC-lang. The 𝜄DOT machine only has a

heap, a stack, and a control term, similar to the mark 1 machine of Sestoft [1997]. FBC-lang uses a

CESK-style machine [Felleisen and Friedman 1987], with stack frames (environments), and stack

variables which are updated during execution. The FBC-lang machine explicitly throws exceptions,

whereas the 𝜄DOT machine can get stuck.

In their safety proofs, 𝜄DOT and FBC-lang have slightly different, but related, concerns about

initialization. Since the 𝜄DOT abstract machine does not allow reading null fields, the 𝜄DOT progress

lemma shows that well-typed configurations do not get stuck. The FBC-lang safety proof instead

shows that null dereference exceptions are not thrown. The differences in the abstract machines

used also affect the safety proof. The FBC-lang safety proof reasons about objects reachable from

stack variables before and after execution, and shows that the appropriately initialized values are

reachable from stack variables after execution. They define an object to be locally initialized if all its

non-nullable fields are initialized, and an object to be globally initialized if all objects (transitively)

reachable from it are locally initialized. The FBC-lang proof shows that if all the arguments to a

constructor are globally initialized before the execution of the constructor, then the object returned

by the constructor is globally initialized. The 𝜄DOT safety proof does not use global reachability

criteria, and instead reasons only about local reachability, and shows that global constraints on the

heap are maintained by the allowed updates.

Relation to Initialization Systems. Our subheap formulation was influenced by the Delayed Types

system [Fähndrich and Xia 2007] and the Flexible Initialization system of Haack and Poll [2009].

In the Delayed Types system, there is a stack of delayed times and a distinct time Now. When

objects of the latest delayed time are fully initialized, they are promoted to having the time Now.

Promoting all objects of the latest time to Now is similar to how we promote the top-most subheap

to the committed subheap. In some ways, their system is more flexible than ours, since they allow

pointers from an object of a lower delayed time to a later delayed time. This additional flexibility

comes at the cost of a more complicated initialization system that has to make comparisons between

different delayed times, whereas 𝜄DOT only has two initialization states, committed and free.

The system of Haack and Poll [2009] does not try to ensure that objects are fully initialized, but

is instead concerned with initializing immutable objects. It defines subheaps of objects that are

mutable for initialization and later promoted to being immutable. The system does not ensure that

objects are sufficiently initialized and hence may throw null pointer exceptions.

While most related work targets existing languages with constructors, Servetto et al. [2013]

propose placeholders as a novel language feature for creating groups of cyclically-linked objects.

Relation to DOT Calculi. 𝜄DOT is a modification of the 𝜅DOT calculus [Kabir and Lhoták 2018].

In 𝜅DOT, fields of objects can contain arbitrary terms, which are evaluated on field reads. 𝜄DOT

restricts fields to contain only null pointers or pointers to other heap items. This makes the 𝜄DOT

type system unsound on its own, since it does not prevent programs from reading uninitialized

fields. To recover soundness, 𝜄DOT adds an effect and initialization typing system.

The pDOT calculus [Rapoport and Lhoták 2019] is an extension of WadlerFest DOT with support

for full path-dependent types of the form 𝑥 .𝑓 𝑜𝑜.𝑏𝑎𝑟 .𝐴, whereas WadlerFest DOT, 𝜅DOT, and 𝜄DOT

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

𝜄DOT: A DOT Calculus with Object Initialization 208:27

only support types of the form 𝑥 .𝐴. Unlike WadlerFest DOT and 𝜅DOT, where fields contain

arbitrary terms, in pDOT, fields only contain lambda literals, other objects, or paths. In pDOT,

top-level objects behave like entire subheaps that are defined and allocated all at once.

Objects in pDOT are not mutable, so the object that a path points to does not change during

execution. The pDOT calculus relies on objects being immutable and paths being normal forms

to introduce full-path dependent types to pDOT. In 𝜄DOT, a simple way to introduce stable paths

would be to disallow mutation on committed objects, and to modify the (Init-Asn-Comm) rule in

Figure 11 to only allow assignments to free variables. This would allow us to have typing and

subtyping rules on full path-dependent types. But this still would not be enough to model some

pDOT programs that require path dependent typing during initialization. For stability of paths, we

need to ensure that fields are only assigned once. In addition, to allow full path assignments to

fields during initialization, 𝜄DOT would require a much stronger definite assignment analysis.

9 CONCLUSION

We have presented 𝜄DOT, an extension of the Dependent Object Types (DOT) calculus with

features for reasoning about object initialization and an effect system inspired by the Freedom

Before Commitment scheme [Summers and Mueller 2011b] to guarantee that all objects are safely

initialized before their fields can be read. We have verified this guarantee using the Coq proof

assistant. 𝜄DOT can serve as a solid foundation for amending the Scala language with features

to statically track object initialization state and eliminate the known unsoundness due to null

references reported by Amin and Tate [2016].

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and Engineering Research Council of Canada.

There were many helpful discussions with many people while working on 𝜄DOT. In particular,

we are indebted to the following people:

• Marianna Rapoport for sharing her insights into DOT and providing feedback on early

versions of this paper,

• Werner Dietl for sharing his knowledge about existing initialization systems and for pointing

us to FBC,

• Abel Nieto for sharing his insights into initialization in Scala-like languages, and

• Martin Odersky and Fengyun Liu for sharing their insights on the uses of the unclassified

initialization type in FBC which helped us simplify our calculus.

REFERENCES

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The Essence of Dependent Object

Types. In A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th

Birthday (Lecture Notes in Computer Science, Vol. 9600), Sam Lindley, Conor McBride, Philip W. Trinder, and Donald

Sannella (Eds.). Springer, Cham, 249ś272. https://doi.org/10.1007/978-3-319-30936-1_14

Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of Path-Dependent Types. In Proceedings of the 2014

ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of

SPLASH 2014, Portland, OR, USA, October 20-24, 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, New York, NY,

USA, 233ś249. https://doi.org/10.1145/2660193.2660216

Nada Amin and Ross Tate. 2016. Java and Scala’s Type Systems Are Unsound: The Existential Crisis of Null Pointers. In

Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (Amsterdam, Netherlands) (OOPSLA 2016). ACM, New York, NY, USA, 838ś848. https://doi.org/10.1145/

2983990.2984004

Manuel Fähndrich and Songtao Xia. 2007. Establishing Object Invariants with Delayed Types. In Proceedings of the 22nd

Annual ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications (Montreal, Quebec, Canada)

(OOPSLA ’07). ACM, New York, NY, USA, 337ś350. https://doi.org/10.1145/1297027.1297052

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1145/2983990.2984004
https://doi.org/10.1145/2983990.2984004
https://doi.org/10.1145/1297027.1297052

208:28 Ifaz Kabir, Yufeng Li, and Ondřej Lhoták

Matthias Felleisen and Daniel P. Friedman. 1987. A Calculus for Assignments in Higher-Order Languages. In Conference

Record of the Fourteenth Annual ACM Symposium on Principles of Programming Languages, Munich, Germany, January

21-23, 1987. ACM Press, New York, NY, USA, 314ś325. https://doi.org/10.1145/41625.41654

Christian Haack and Erik Poll. 2009. Type-Based Object Immutability with Flexible Initialization. In ECOOP 2009 - Object-

Oriented Programming, 23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings (Lecture Notes in Computer

Science, Vol. 5653), Sophia Drossopoulou (Ed.). Springer, Berlin, Heidelberg, 520ś545. https://doi.org/10.1007/978-3-

642-03013-0_24

Ifaz Kabir and Ondřej Lhoták. 2018. 𝜅DOT: Scaling DOT with Mutation and Constructors. In Proceedings of the 9th

ACM SIGPLAN International Symposium on Scala (St. Louis, MO, USA) (Scala 2018). ACM, New York, NY, USA, 40ś50.

https://doi.org/10.1145/3241653.3241659

Ifaz Kabir, Yufeng Li, and Ondřej Lhoták. 2020. 𝜄DOT: A DOT Calculus with Object Initialization. Technical Report CS-2020-06.

University of Waterloo. https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2020-06.pdf

Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubochet, Burak Emir, Sean McDirmid, Stéphane

Micheloud, Nikolay Mihaylov, Michel Schinz, Lex Spoon, Erik Stenman, and Matthias Zenger. 2006. An Overview of the

Scala Programming Language (2. Edition). (2006). http://infoscience.epfl.ch/record/85634

Xin Qi and Andrew C. Myers. 2009. Masked Types for Sound Object Initialization. In Proceedings of the 36th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah, GA, USA) (POPL ’09). ACM, New York,

NY, USA, 53ś65. https://doi.org/10.1145/1480881.1480890

Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. 2017. A Simple Soundness Proof for Dependent Object Types.

Proc. ACM Program. Lang. 1, OOPSLA, Article 46 (Oct. 2017), 27 pages. https://doi.org/10.1145/3133870

Marianna Rapoport and Ondřej Lhoták. 2019. A Path to DOT: Formalizing Fully Path-dependent Types. Proc. ACM Program.

Lang. 3, OOPSLA, Article 145 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360571

Tiark Rompf and Nada Amin. 2016. Type Soundness for Dependent Object Types (DOT). In Proceedings of the 2016 ACM

SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,

part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, Eelco Visser and Yannis Smaragdakis

(Eds.). ACM, New York, NY, USA, 624ś641. https://doi.org/10.1145/2983990.2984008

Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. 2013. The Billion-Dollar Fix - Safe Modular Circular

Initialisation with Placeholders and Placeholder Types. In ECOOP 2013 - Object-Oriented Programming - 27th European

Conference, Montpellier, France, July 1-5, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7920), Giuseppe Castagna

(Ed.). Springer, Berlin, Heidelberg, 205ś229. https://doi.org/10.1007/978-3-642-39038-8_9

Peter Sestoft. 1997. Deriving a Lazy Abstract Machine. Journal of Functional Programming 7, 3 (May 1997), 231ś264.

https://doi.org/10.1017/S0956796897002712

Alexander J. Summers and Peter Mueller. 2011a. Freedom Before Commitment : Simple Flexible Initialisation for Non-Null

Types. Technical Report 716. ETH Zurich.

Alexander J. Summers and Peter Mueller. 2011b. Freedom Before Commitment: A Lightweight Type System for Object

Initialisation. In Proceedings of the 2011 ACM International Conference on Object Oriented Programming Systems Languages

and Applications (Portland, Oregon, USA) (OOPSLA ’11). ACM, New York, NY, USA, 1013ś1032. https://doi.org/10.1145/

2048066.2048142

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation

115, 1 (1994), 38ś94. https://doi.org/10.1006/inco.1994.1093

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 208. Publication date: November 2020.

https://doi.org/10.1145/41625.41654
https://doi.org/10.1007/978-3-642-03013-0_24
https://doi.org/10.1007/978-3-642-03013-0_24
https://doi.org/10.1145/3241653.3241659
https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2020-06.pdf
http://infoscience.epfl.ch/record/85634
https://doi.org/10.1145/1480881.1480890
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3360571
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1017/S0956796897002712
https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1006/inco.1994.1093

	Abstract
	1 Introduction
	2 Background
	2.1 Formalizing Scala
	2.2 Freedom Before Commitment
	2.3 Subheap Formulation

	3 Semantics
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Type System
	3.4 Initialization Invariants
	3.5 Effect System
	3.6 Initialization System

	4 Configuration Typing
	4.1 Heap Correspondence
	4.2 Well-Committed and Free Heaps
	4.3 Stack Typing
	4.4 Effect Correspondence
	4.5 Typing a Configuration

	5 Type and Initialization Safety
	5.1 Preserving Heap and Effect Invariants
	5.2 Substitution Lemma for Initialization
	5.3 Preservation

	6 Extensions of DOT
	6.1 Free Literals Extension
	6.2 Local Initialization Extension

	7 Discussion
	7.1 DOT without the Initialization System is Unsound
	7.2 The Type of null
	7.3 First Class Constructors

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

